Vertexing issues

Nicola Neri

for the Pisa BaBar Group

INFN Pisa

Maurizio Pierini

Wisconsin University

SuperB WorkShop Frascati 11 Nov 2005

Interaction region SuperB

Layer0 design

New conceptual design for layer0

- Use kapton foil ~50 μm as support structure for the Si pixel
- Beam pipe radius set the radial distance for the layer0
- Rule of thumb: vertex resolution improves almost linearly with layer0 radial distance

The tag-vertex starts from a pseudo-track determined from the B reco candidate which is better determined once you have better track parameters measurement. It avoids to misidentify the B vertex with the D vertex.

New tag vertex algorithm

It is worth to investigate the possibility to reconstruct the secondary vertex of the B Tag (charm events) and evaluate the impact on the bkg rejection:

- uds events have no long live particles except K_s
- charm, tau events have no secondary vertex
- B events have secondary vertex

If it works a fisher discriminant to separate signal from continuum events should contain also vertex informations.

Benefits of better vertexing

- Better vertex determination not only impacts the time dependent measurements but all the analysis in general.
- The ∆z helps rejecting continuum uds events.
- One can think about "ad-hoc" topological algorithm to further discriminate against combinatorial bkg.
- If you are able to separate the D vertex from the B vertex. You can determine the flavor of the tag B decay from the charge difference between the B and the D.
- SLD tagging "dipole based" (δQ) technique could be helpful. δQ>0 (δQ<0) means B0bar (B0).

• REDUCE BKG • IMPROVE TAGGING PERFORMANCES