Tracking issues

Francesco Forti SuperB Workshop LNF, 11-12 November, 2005

Tracking system

- Various stages/functions/devices
 - Vertex reconstruction
 - Dominated by first layers
 - Angle determination
 - SVT(more) + DCH(less)
 - Slow π finding
 - SVT multi layers
 - Momentum determination
 - DCH(mostly)
 - Track finding and recognition
 - DCH + (SVT for track hitting few layers)
 - dE/dx
 - DCH + (a bit of help from my friend SVT)
 - Trigger
 - DCH only

Types and level of backgrounds

- Beam gas
- Synchroton radiation
- → Both proportional to current
 - Should not be a problem at Superb
- Luminosity sources (eg radiative Bhabhas)
 - Careful IR design. Bhabhas into the detector are there.
- Beam-beam interactions
 - Potentially important
- Touschek background
 - 1/E². Improves with smaller asymmetry. But, much higher beam density
- Thermal outgassing
 - Due to HOM losses. Not an issue with small currents
- Injection background
 - Not an issue because of damping rings scheme

Background composition

Background bottom line

- Single beam backgrounds reduced by large factor (1000?) thanks to small currents (See Steve's talk)
- Beam-beam interaction and beam blow-up is unknown
 - Shielding of detector from interaction in collimators
- Assume background is not larger than in present machines.
 - Babar-Belle task force has worked to understand and compare sources of backgrounds.
- But issue of Bhabhas vs acceptance vs boost needs to be addressed.

Comment on timing

- 1-10us beam crossing and small backgrounds will help relax some detector constraints
 - No need to be so fast
- But there are so many unknowns we should plan for a detector at least as robust as the present generation against backgrounds

Vertexing

- Small radius beam pipe brings a lot of advantages
 - Need 5mm (or 10mm) radius detector
- Possibilities
 - Silicon strips
 - Silicon active pixels
 - Monolithic pixels are too thick
 - CCDs are too slow for 1us bx.
- Why strips won't work ?

Geometry and thickness

- For 5mm B.P., a=20% D=6.3mm
- Very very narrow strip detector
 - 0.5+0.5 mm dead area at the edges means about 20% overlap is needed to have full efficiency

- Very unfavorable aspect ratio
 Very hard to readout
- Very hard to reduce thickness below 200um.

Distortion due to background

SVD Cluster Classification

• (S, S) **True cluster** S • (B, B) Background(BG) cluster Signa • (B,S), (S,B) Fake cluster Background S+BSignal S (S+B,S)**Distorted cluster** Background B **BG/Fake/Distorted clusters smear hit position** affect tracking/vertexing

Takanori Hara, Hawaij workshop

Pixel concept

- Monolithic Active Pixels
- Thinned to 50um
 - Possible because active region is only about 10um thick
- With 5mm BP, 3mm² chip could be OK.
- Glue on kapton foil
- Support kapton off BP
- Reduce thickness of Au shield
 - How much can we thin it ?
- Many issues to resolve
 - Feasibility of a MAPS system
 - z overlap
 - Cables, cooling
 - Mechanical support

x10 scale with 5mm radius BP, 3mm pixel chip

Lots of MAPS R&D in many places

MAPS R&D

CAP1: simple 3-transistor cell TSMC 0.35µm Process

Pixel size:

22.5 µm x **22.5** µm

CAPs sample tested: all detectors (>15) function.

TESTED IN BEAM.

MAPS R&D II

• SLIM chip (Babar collabor.)

ST 0.13um triple well technology Single pixels tested with source Full signal processing chain

Small radius tracking

- Silicon strips work
 beautifully
 - Don't fix it, it ain't broken
- Time structure and small background might allow to lengthen the shaping time
 - 100ns → 500 or 1000 ns ?
 - Better S/N, or longer strips.
- Small angle region will be very crowded
 - Need to study that area
 - Disks ? Striplets ?
 - Actual angle will be larger due to reduced boost

Central tracking

- Silicon or gas ?
 - Solid state only interesting to cope with high backgrounds, otherwise a loser.
- Gas drift chamber in high background
 - Extensively studied by Belle
 - Smaller cell drift chamber (in the inner layers) constructed and installed in 2003
 - (See Uno talk at 2005 Hawaij workshop and Senyo talk 2004 Belle workshop)
- Other options
 - Jet chamber ?
 - TPC ?

Normal cell(17.3mm)

Hit rate in the present Belle CDC

Apr.-5th ,2005 $I_{HER} = 1.24A$ $I_{LER} = 1.7A$ $L_{peak} = 1.5x10^{34} cm^{-2} sec^{-1}$ $I_{CDC} = 1mA$

Small cell drift chamber

Drift chamber optimization

- Fast gas is another option
 - but higher Lorentz angle degrades resolution
- Need to optimize the transition radius
 - SuperBelle plans on 160mm
- How small ?
 - small cell has also implications for other issues:
 - number of wires increase material and force on endplate
 - number of holes in endplate decrease stiffness
 - Clearly doable.

Conclusion and summary

- Low backgrounds are key
- Optimization of present tracking systems seems fine and doable

Keep system robust

- Very small radius vertexing device requires R&D
 - MAPS are very promising

 strip solution looks hard, but could probably worked out with some compromise

Bhabha rate and charateristics need to be studied.