

Optimization of SBF Damping Rings

John Seeman SLAC Frascati Meeting November 11, 2005 SLAO

PEP- II Linac Accelerator Systems Department

Overview of a SBF

 e^+ Final Predamping damping 3.5 GeV Final focus e_ Final Predamping damping 8 GeV

SBF Option 1

- First damping ring small radius
 - $-\sim 200-500 {\rm m}$
 - Several rings per particle type (~4)
- Second damping ring large radius
 - 2000-6000 m
 - One per beam
 - Damp slowly but to small emittance
 - Many bunches

SBF Option 2

- Only large diameter damping rings
 - $-\sim 2000-10000$ m circumferences
 - Several rings per particle types (~2)
 - Many low charge bunches
 - Perhaps higher frequency RF (476-1400 MHz)

SBF Option 3

- Use damping ring for higher 7 GeV positrons, trickle charge and high charge per bunch. Use electron linac for low energy beam using SC cavities and throw beams away. Low energy-charge linac.
- Or reverse: damping ring for low energy beam e+ and use e- high energy linac. High energy e- saves power (~E⁴) in damping ring.

Personal Choice November 11, 2005

- Energies: 4 x 7 GeV
- Damping rings: two 2200 rings per beam
 - One fast damper and one slow damper
 - Use 476 MHz
- Use PEP-II HER as bunch compressors
- $\beta = 0.8 \text{ mm}$
- Emittances = 0.25-0.5 nm (like PETRA-III)
- Round beams to gain Hd luminosity gain of $\sim x4$.
- 10 A per ring for 7000 bunches
- Collide each bunch at 120 Hz which is $\sim 1 \ \mu sec$ between collisions.
- Needs ~1 MHz kickers

Full parameters

			LER	HER	
•	Luminosity (L)	1.04E+36	***	***	1/cm^2/s
•	CM energy	10.583	***	***	GeV
•	Beam energy (E)	***	4	7	GeV
•	Beam Gamma		7828	13699	
•	Particle type		e-	e+	
•	Crossing angle	0.000	***	***	mrad
•	Bunch collision frequency f	120	***	***	1/sec
•	Disruption X	***	84.35	53.02	
•	Distruption Y	***	119.29	74.98	
•	Hd	4	***	***	
•	Number bunches n	7000	***	***	
•	IP betax*	***	0.8	0.8	mm
•	IP betay*	***	0.8	0.8	mm
•	IP emittance x (input)	***	0.5	0.5	nm-rad
•	IP emittance y (input)	***	0.25	0.25	nm-rad
•	IP bunch length gaussian	***	0.8	0.8	mm
•	IP x beam size	***	0.632	0.632	microns
•	IP y beam size	***	0.447	0.447	microns
•	Beam rel. E spread (input)	***	1.00E-03	1.00E-03	fraction
•	Number particles/bun N	***	1.10E+11	1.00E+11	

PEP- II Linac Accelerator Systems Department

"SBF" Tunnel?

PEP- II Linac Accelerator Systems Department

Overview schematic (One half)

PEP- II Linac Accelerator Systems Department

What is the best?

- Many options to consider.
- Hope this workshop will provide a guide.