Trigger & Timing Issues Aaron Roodman Stanford Linear Accelerator Center Frascati SBF Workshop Nov 11, 2005

Physics Pile-Up

What is the minimum rate of collisions allowed?

assume the Maximum Bhabha pile-up acceptable is one per crossing

observable Bhabha cross-section is 40nb and at L=10³⁶ that corresponds to 40kHz

at that rate what else is in the detector with a hadronic event?

(0.1 Hadronic events per crossing) so 10% of Hadronic events have a second $q\bar{q}$ or $B\bar{B}$ another 5% have a $\mu^+\mu^-$ or $\tau^+\tau^$ two-photon events and radiative Bhabhas? problem will be fragments of other interactions

Trigger and DAQ implications

L1 Trigger - not necessary, all events are read out DAQ - needs to read out data at 100kHz level (same in all 10³⁶ scenarios) Gregory's talk at Hawaii '04 notes that 50Gbyte/sec switches already exist

$e^+e^- \rightarrow$	Cross-section (nb)
$b\overline{b}$	1.05
$c\overline{c}$	1.30
$S\overline{S}$	0.35
$u\overline{u}$	1.39
$d\overline{d}$	0.35
$\tau^+\tau^-$	0.94
$\mu^+\mu^-$	1.16
e^+e^-	~ 40

Detector Latency

Detector latency time is $\tau_{\text{Detector}} \sim 2\mu sec$

Match collision frequency to detector read-out time no idle time between collisions implies a 500KHz collision rate match to damping time?

Implications of 500kHz collision rate

L1 Trigger needed to reduce rate by a factor of 10-100 digital buffering needed as delay for L1 trigger and for trigger queue
DAQ data rates are the same in all 10³⁶ schemes
Bhabha pile-up at the 10% level multiple hadronic interactions in 1% of hadronic events

Trade-offs in a LCSBF

 $physics \ pile-up \Leftrightarrow beam-related \ backgrounds$

Physics Analysis Issues

Clean-up Algorithm - remove Bhabha pile-up

Flavor Tagging

Extra leptons from radiative Bhabha or mu-pairs Extra Kaons from two-photon events detailed study needed

Recoil Analysis $(B^+ \rightarrow \tau^+ \nu_{\tau})$

now Beam-related backgrounds cause some inefficiency interaction related backgrounds would replace those inefficiency again depends on fraction of physics pile-up that cannot be removed

Rare B decays

extra background from pile-up of $q\bar{q}$ and $B\bar{B}$ interactions detailed study needed