Toru lijima Nagoya University

Physhas & Devers

A DUDENT KEKB

November 11, 2005

Super-B meeting at Frascati

Grand Scenario of B Physics

Physics Reach at Super-KEKB

Physics at Super B Factory (hep-ex/0406071)

In Case of SUSY...

The squark/slepton mass matrix
 Sensitive to SUSY breaking mechanism.

$$\mathbf{x}_{ij} = \begin{pmatrix} m_{11}^2 & m_{12}^2 & m_{13}^2 \\ m_{21}^2 & m_{22}^2 & m_{23}^2 \\ m_{31}^2 & m_{32}^2 & m_{33}^2 \end{pmatrix}$$

1 sta

Off-diagonal terms Flavor Physics Luminosity frontier

Diagonal terms: LHC/ILC Energy frontier

B and τ are in the 3rd generation ("hub" quark & lepton) probe for both $3 \rightarrow 2$, $3 \rightarrow 1$ transitions.

CPV in b→s and SUSY Scenario

 Different SUSY breaking scenario can be distinguished in A_{cp}^{mix}(φKs) - A_{cp}^{mix}(K*⁰γ) correlation.

Expected precision at 5ab⁻¹

Correlation of other ovservables are also useful. $A_{cp}^{dir}(X_s\gamma), A_{FB}(X_sII), Br(\tau \rightarrow \mu\gamma), CKM$

Lepton Flavor Violation

- Quarks have flavor mixing.
- Neutrino mixing has been found.
- What about charged leptons ?

(Original figure by Dr. Kuno / Osaka Univ.)

 $\tilde{\chi}_0$

 $\tau \rightarrow 3l$, l η

 $\tilde{\tau} \chi \tilde{\mu}(\tilde{e})$

 $(m_{\tilde{l}}^2)_{23(13)}$

h

 $\mu(e)$

Search region enters into $O(10^{-8} \rightarrow 10^{-9})$

Interplay between B and τ

b-s penguin v.s. $\tau \rightarrow \mu \gamma$

GUT relation: $(m_{\tilde{d}_R}^2)_{23} \approx (m_{\tilde{l}_L}^2)_{23} e^{i(\varphi_1 - \varphi_2)}$ Thus, b-s penguin processes and $\tau \rightarrow \mu \gamma$ are correlated in the SUSY GUTs.

This is non-trivial test for the SUSY GUTs.

 $m_{\nu_{r}} = 5 \times 10^{-2} eV,$ $U_{\mu 3} = 1/\sqrt{2},$ $M_{N_{r}} = 5 \times 10^{14} GeV,$ $\tan \beta = 30$ J.Hisano @ TauO4 Workshop, Nara, Nov, 2004. J.Hisano, Y.Shimizu PLB565(2003)183.

Comment

τ decay is an important physics program at luminosity frontier !

- Upper limit O(10^{-8~-9}) enough ?
- We need more studies to maximize the sensitivity at Super-B.
- LFV in τ decays would be a good application of e+e-machines w/ Lum. beyond $10^{35 \sim 36}$.
- If we start to see something at Super-B, it would strongly motivate us push forward the luminosity frontier.

SuperKEKB overview

Super-high luminosity $\cong 4 \times 10^{35}$ cm⁻²s⁻¹

- $> 5 \times 10^9 \text{ BB}$ per yr.
- > $4 \times 10^9 \tau^+ \tau^-$ per yr.
- Letter of Intent (LoI) in 2004
 - 276 authors from 61 institutions
 - available at http://belle.kek.jp/superb/loi
 - "Physics at Super B Factory" hep-ex/0406071
- Official budget request* ("gaisan" request) sent from KEK to MEXT** in Aug. 2005

*This does not mean the official approval of the project. **Ministry of Education, Culture, Sports, Science and Technology

Second detector ?

Feature of Super-Belle Exp.

Detector Challenge

Higher background

- radiation damage and occupancy in the near beam detector (SVD/CDC)
- fake hits and pile-up noise in ECL
- neutron background in KLM?
- Higher event rate
 - higher rate trigger, DAQ and computing
- Require special features
 - Good K/ π , low $\pi \mu$ identification \leftarrow s $\mu\mu$ recon. eff.
 - Hermeticity $\leftarrow v$ "reconstruction"
 - Full reconstruction

Beam Background

Super-Belle

Vertex detector for SuperKEK

- The baseline is to use APV25 and striplet DSSD.
- Continuous Acquisition Pixel (CAP) as an alternative solution
 Keep the hit occupancy <10% at x20 BKG.
 - 1/10 reduction by shaping time, 1/5 reduction by short strips.

R&D on Striplet + APV25

Beam test at CERN

- 5 GeV/c π^- beam
- APV25 readout on n-side, no p-side readout
- 51/102 μ m readout pitch

signal ~ 18

• 40/60/80 MHz system clock

ke noise = 411 eS/N =APV25S1 UV 51um (pos 1 Entri Mean 2 196e+04 14000 RMS 9505 χ^2 / ndf Width 788.5/56 1368 + 8.712000 1.725e+04 ± 12 .39e+08 ± 379729 Area 10000 1748 + 169 8000 Peak = 17932 8 FWHM = 41.2% 6000 4000 2000

Cont. Acq. Pixels (CAP) 1 Prototype

CAP: Hit resolution

20

Tracking

Hit rate in the present CDC

- CDC radius: r=16cm-114cm
 - Hit rate similar to the present inner part.
 - Larger diameter for better resolution.
 - Smaller cell size to reduce occupancy.
- MC study for tracking with bkg. Overlay
 - Tracking possible even with 20 more bkg.
 - Low p track should be covered by SVD.

Csl Calorimeter

- Pure CsI + phototetrode (BINP)
 - 30ns shaping time + wave form sampling (43MHz)
 - Noise reduction factor: 33x5 = 165
 - Pile-up noise = 0.8MeV at x20 bkg.
 - ENE = 0.4-0.5 MeV

Barrel as it is + new shaper $(0.5\mu s)$ + w.f. sampling

Super-Belle KLM

KLM based on scintillator counters with novel photodetectors (multipixel photodiodes in Geiger mode)

Strip option:

Tile option

x and y layers of 4cm wide strips in each KLM gap Two layers of 10×10cm² tiles shifted by 1/2×1/2 tile size

~25k scintillator strips

~125k scintillator tiles

- Coincidence between two layers ⇒ lower background rate even if single layer occupancy is higher.
- No dead time \Rightarrow higher efficiency, independent on occupancy.

Additional ~25k strips required for barrel

Test of Strip Option

Strip Test Results

Tile option gives even better results

3

Particle ID

Present Belle PID

- Eff/fake ~ 90/10%
- No high mom. PID for endcap
- Material (ACC+TOF ~ $0.35X_0$)
- With x20 background
 - TOF cannot survive
 - ACC is OK
- Benefits of improved PID

Typical examples

- B→dγ/sγ
- В→Кµµ

w/ present performance

TOP counter

Cherenkov ring imaging with precise time measurement – Quartz radiator (2cm^t)

- Basic study was already done.
- Photon detector (MCP-PMT)
 - Good time resolution < ~40ps
 - Single photon sensitive under 1.5T

onshed by Okamoto optics work, me

Linear-array type photon detector

MCP-PMT

1x4 linear-anode MCP-PMT newly developed for TOP readout.

R&D for Readout ASIC

Time-to-Analog Converter → Time resolution <~20ps.
 Double overlap gates → Less dead time (~100ns).
 0.35m CMOS process.

Performance w/ 3 read-out plane

Design optimization

- Read-out at both ends
- Long propagation distance \rightarrow Large chromatic error.
 - \rightarrow better performance in q>90deg.
 - Another read-out at q=46deg. \rightarrow better performance in q<90deg.

MCP-PMT with GaAsP

- Further reduction of chromatic dispersion
 - \rightarrow GaAsP photo-cathode
 - Higher Q.E. (~40%@540nm)
 - at longer wave length \rightarrow less chromatic error

Aerogel RICH

Proximity focusing RICH with aerogel radiator

- Series of test beam experiments in 1999~2003
 - Confirmed principle of operation
 - Demonstrated >4 σ π /K separation at 4GeV/c

Focusing Aerogel-RICH

New imaging technique by introducing multiple radiators

Increase Cherenkov photons without loosing single angle resolution due to emission point uncertainty

Take full advantage of controllable index of aerogel

Optical Properties(3)

- Improved transparency w/ new solvent (DMF)
- Trials for larger size tile.
- Trials for multi-index tile.

2005 sample: 60x40x30mm³

12x12 HAPD

Optimized for the proximity focusing aerogel RICH.

Package	72x72mm ²
Number of pixels	12x12 (6x6/chip)
Pixel size	5x5mm ²
Effective area	64%
Gain	20000 w/ APD

1st prototype

Comments

■概算要求

Preliminary budget request submitted to MEXT.

■ 素核研将来計画委員会

IPNS committee for future planning, consisting of physicists from Super-B, J-PARC and ILC.

■測定器開発室

Activity for advanced detector R&D, horizontal to several projects (not project oriented).

The coming 1-2 years would be important for Super-KEKB.

We need make wind blowing in the community, to make the airplane faster (before the "typhoon" come...)

Let's keep cooperations

Physics cases in B and \u03c0 decays to demonstrate their impact

Detector R&D's
 Accelerator
 Beam background
 to prove the experimental feasibility

Super-Belle Strategy

Vertexing with new SVD

- Beam pipe radius = 1cm.
- 2 lyr. striplet/pixel + 4 lyr. DSSD
- Tracking with new CDC
 - Smaller cell size (for inner part) + Faster gas

Endcap detector replacement

- Pure CsI for EM calorimetry
- Strip/tile scintillator or RPC in avalanche mode with new gas mixture.

PID improvement

- Ring imaging counters (TOP + Aerogel-RICH)
- Other options; FDIRC, TOF w/ finer seg.

DAQ/TRIG/Comp.

- Full pipeline readout (FINESSE + COPPER)
- 3-stage event building (new RFARM)
- Large scale computing with GRID architecture

Same acceptance as Present Belle even with new IP design.

r = 15cm (low p tracking by SVD)

Front-end electronics

- Shoter shaping time
- Wave form sampling (Csl, CDC)
- High timing resolution (TOP/TOF)

DAQ/TRIG for Super-Belle

Estimated DAQ condition at SuperKEKB Updated!!

L1 trigger rate	Belle(L=1.5x10 ³⁴ 500 Hz)SuperKEKB(L=5x10 ³⁵) 20 kHz
Maximum trigger rate	650 Hz	30 kHz
Event size at L1	40 kB/ev	300 kB/ev
Data flow rate at L1	25 MB/s	9 GB/sec
Data flow at storage	13 MB/s	250 MB/sec
Subdetector readout	26	>1000
HLT reduction	2	12

Status of Detector Electronics

- SVD3 : full CMS APV25 -> FINESSE design is on track
- Pixel : CAP option -> needs more R&D
- CDC : 2 approaches

1) TDC(12bit) + FADC (12bit@20MHz) -> FINESSE design on track

2) FADC for waveform sampling (12bit@>100MHz)

 -> new development necessary (high-density 12bit FADC)

- ECL : Wave form sampling is absolutely needed. 14bit dual-range FADC@43MHz

 -> R&D in progress at BINP, in good shape
 - TOP/RICH : Need to manage pixel photo-detector HPTDC, Analog pipeline ASIC+FADC@100MHz
 -> not yet fixed. needs more R&D.

- KLM : time-multiplexing of hit info Pipeline TDC

-> unchanged from Belle

