Plan of SuperKEKB

Funakoshi

KEK

Introduction

Why do we propose SuperKEKB?

- Physics Motivations
 - -Next milestone of KEKB/Belle: 1 ab⁻¹ (Now: 0.49 ab⁻¹)
 - -Search for New Physics: 10~50 ab⁻¹
 - New source of CP violation
 - New source of flavor mixing
 - \bullet Lepton favor violation of $\tau-$ lepton

SuperKEKB? [cont'd]

- Machine Motivations
 - We have a lots of properties to be useful for a super B factory.
 - We have accumulated technologies and techniques for high Luminosity.
 - High beam current accumulation
 - High beam-beam parameters
 - Cures of harmful effects (e- could, ion...)
 - Use of legacy of KEKB
 - 3-km tunnel
 - RF sources and cavities
 - Magnets
 - Etc.

(some examples from KEKB RF-shield fingers experiences)

Damaged RF-shield fingers of bellows due to HOM

Direct damage by beam hit (Movable Mask)

Vacuum leak due to SR irradiation (Helico-flex gasket)

We had to overcome a number of vacuum troubles for attaining high beam currents.

Boundary conditions and constraints

- Other projects
 - J-PARC
 - Construction of J-PARC will be finished at the beginning of 2008.
 - ILC (my personal view)
 - Construction will start in 2010? (-> maybe delayed)
 - Physic experiments will start 2015? (-> maybe delayed)
 - Super B factory will naturally fit into the time table of developments of HEP.
- Strategy of SuperKEKB
 - The plan should be realistic.
 - Construction will start in 2008.
 - Avoid adoptions of new devices which required long-term R&D's such as an RF system with a new frequency.

Three factors to determine luminosity:

Key points of upgrade for SuperKEKB

Key points of upgrade[1]

- High Beam Currents
 - RF system
 - RF power
 - Frequency detuning due to beam loading
 - Handling of high HOM power
 - Vacuum System
 - Handling of high SR power
 - Tolerance against high HOM power
 - Electron cloud instability
 - Linac upgrade
 - Energy switch between e- and e+
 - Bunch-by-bunch feedback
 - Faster damping (transverse)
 - Longitudinal feedback (no need at the present KEKB)

SuperKEKB Requires More RF Sources and More RF Cavities

Upgrading ARES Cavity

• Fortunately, ARES scheme is flexible to upgrade: By increasing U_s/U_a from 9 to 15, the severest beam instability can be eased by one order of magnitude and manageable with an RF feedback system. • The HOM absorbers (SiC) need to be upgraded: The HOM power per cavity is estimated about 90 kW for the design beam current 9.4 A for LER.

Upgrading Superconducting Cavity

- Cavity structure not changed.
- The HOM absorbers (ferrite) need to be upgraded: The HOM power per cavity is estimated about 50 kW for the design beam current 4.1 A for HER.

R&D of Vacuum Components for SuperKEKB Beam duct with antechamber

- •Smaller SR Power Density
- Lower Impedance
- •Lower photoelectron production by TiN or NEG coating

New design with pumps in Q and SX magnets \rightarrow uniform pumping

Y. Suetsugu et al.

R&D of Vacuum Components for SuperKEKB

Bellows chamber with comb type RF-shield: Some prototypes have been tested in KEKB and showing good performance.

Y. Suetsugu

- High thermal strength
- Low impedance
- No sliding contact on the surface facing the beam

A bellows chamber damaged by the high-current beam.

Injector Linac Upgrade for SuperKEKB

(The present max. energy gain is 4.8 GeV)

T. <u>Kamitani</u> et al.

Bunch-by-bunch Feedback

system

Transverse feedback similar to present design

- •Target damping time: 0.2ms
- •Detection frequency 2.0 -> 2.5 GHz.
- •Transverse kicker needs to handle higher currents.
- •Improved cooling, supports for kicker plates.

•Longitudinal feedback to handle ARES HOM & $0/\pi$ mode instability

•Target damping time: 1ms

•Use DA Φ NE-type (low-Q cavity) kicker.

•Digital FIR and memory board to be replaced by new GBoard under development at/with SLAC

- •Low noise, high speed (1.5 GHz), with custom filtering functions.
- •Extensive beam diagnostics.

M. Tobiyama

Key points of upgrade[2]

- High beam-beam parameters
 - -Combination of choice of betatron tunes and head-on collision
 - $\nu_{\rm x}$ very close to half integer
 - Crab crossing

Beam-beam simulation

Treatment by High-Pressure Water Rinse

K. Hosoyama et al.

Schedule

Key points of upgrade[3]

- Smaller $\beta_{\text{y}}^{\;\;*}$
 - IR design
 - Physical aperture
 - Damping Ring for e+
 - Dynamic aperture
 - Handling of SR from QCS'
 - Handling HOM power around IP
 - Short bunch length
 - CSR

Issues of IR Design

Issues	Causes	Measures
Dynamic aperture	Lower beta's at IP.	Place QCS magnets. closer to IP. Damping ring.
Physical aperture	Lower beta's at IP.	Damping ring. Larger crossing angle.
Heating of IR components	Higher beam currents. Higher power of SR from QCS magnets. Shorter bunch length.	(22mrad -> 30mrad) Under Study.
Detector beam background	Higher power and critical energy of SR from QCS magnets. Higher beam currents. QCS closer to the IP. Higher Luminosity.	Under study by Belle Group.

Place QCS magnets closer to IP

HER dynamic aperture

Required: H/V 4.5/0.52 $\times 10^{-6}m$

CSR at SuperKEKB

- Machine parameters
 - Bunch current: ~2mA <-> 1.2mA (KEKB)
 - Bunch length: 3mm <-> ~8mm (KEKB)
 - Vacuum chamber radius: 47mm(SuperKEKB original design) <-> 47mm(KEKB)
- CSR simulation (T. Agoh)
 - Serious effect of CSR was found with the original design in LER.
 - Possibility of smaller chamber radius (~30mm) is now under study.

Energy Change of Particles in KEKB and SuperKEKB

• Energy Change by CSR for one particle for one bend.

T. Agoh

28

29

T. Agoh

CSR + Resistive Wall

Initial Bunch length: $\sigma_z = 3$ mm

Energy spread $\sigma_{\delta} = 7.1 \times 10^{-4}$

- Threshold for I_b : similar to the case of only CSR
- Bunch shape: distorted due to ResistiveWall wakefield

Performance Limitations

- Beam currents (with the same RF frequency)
 - RF power (space for RF cavities)
 - CSR
 - Fast ion instability (under study)
- Beam-Beam parameters
 - 0.019 already seems challenging.
- β_v^*
 - Bunch length (CSR)
 - Dynamic aperture is marginal.

Components to be upgraded

Machine Parameters

		bare lattice	with beam-beam	unit
Beam current (LER/HER)	I	9.4/4.1	9.4/4.1	А
Beam energy (LER/HER)	E	3.5/8.0	3.5/8.0	GeV
Emittance	٤ _x	24	128	nm
Horizontal beta at IP	$\beta_x \star$	20	2.3	CM
Vertical beta at IP	β_{y} *	3	2.4	mm
Horizontal beam size	σ_{x}^{\star}	69	54	μm
Vertical beam size	σ_y^{\star}	0.73	1.23	μm
Beam size ratio	$r = \sigma_{u}^{*} / \sigma_{v}^{*}$	1.1	2.3	00
Crossing angle (30 mrad crab crossing)	$\theta_{\rm x}$	0	0	mrad
Luminosity reduction	R_{L}	0.86	0.82	
ξ_x reduction	$R_{\xi x}$	0.99	0.97	
ξ_y reduction	$R_{\xi_{Y}}$	1.11	1.16	
Reduction ratio	$R_L/R_{\xi y}$	0.78	0.72	
Horizontal beam-beam (estimated with S-S simulation)	ξ _x	0.152	0.041	
Vertical beam-beam (estimated with S-S simulation)	ξ _y	0.215	0.187	
Luminosity	L	4.0 x	$cm^{-2}s^{-1}$	

Machine Parameters [2]

	KEKB (c	lesign)	SuperKEKB				
	LER	HER	LER	HER			
Energy [GeV]	3.5	8.0	3.5	8.0			
U ₀ (MeV)	1.5	3.5	1.23	3.5			
Longi. Damping Time [turns/msec]	2300/23	2300/23	2850/28.5	2300/23			
Current [A]	2.6	1.1	9.4	4.1			
Radiation Loss [MW]	3.9	3.9	12	14			
Bunch Length [mm]	5	5	3	3			
Energy Spread	7x10 ⁻⁴	7x10 ⁻⁴	7x10 ⁻⁴	7x10 ⁻⁴			
Momentum Comparction	(1~2)x10 ⁻⁴	(1~2)x10 ⁻	2.7x10 ⁻⁴	1.8x10 ⁻⁴			

Status and future prospects of SuperKEKB

Status and Prospects of SuperKEKB

- R&D Status
 - Present KEKB offers great occasions of R&Ds for SuperKEK.
 - Crab cavity scheme (beginning of 2006) <- largest uncertainty
 - Vacuum chamber (ante-chamber) (ongoing)
 - Vacuum components (bellows, gate valve) (ongoing)
 - Upgrade of bunch-by-bunch Feedback system (ongoing)
 - Upgrade of ARES cavity (ongoing)
 - C-band acceleration units (Linac upgrade) (ongoing)
 - Accelerator physics study on CSR (ongoing)
 - Others
 - SuperKEKB machine R&D is already in the engineering phase rather than the conceptual design phase.
- Cost estimation
 - ~ 415 M\$ in total (not included detector upgrade)
- Time Table for SuperKEKB
 - 2004 April: Letter of Intent for KEK Super B Factory
 - By the end of 2006: Decision making by KEK administration
 - 21 months shutdown for upgrade works (FY 2009-2010)
 - Early in 2011: First beams of SuperKEKB

SuperKEKB Budget Profile

Backup slides

Luminosity Formula

Superconducting Crab Cavity for KEKB

Crab cavity loaded with coaxial coupler for damping HOMs & LOMs other than the deflecting dipole mode.

Crab cavity in He vessel

K. Hosoyama et al.

	KEKB (design)		SuperKEKB	Unit
Magnet p.s.		3.84		MW
Magnet		6.35		MW
SR	8		26	MW
HOM	0.43		9	MW
RF system	16		38	MW
Total	34.6		83.2	MW

Table 12.1: Power losses for KEKB and SuperKEKB.

	⁴¹	Number of	Total κ	HOM power*2
	(V/C)	items	(V/C)	(kW)
Resistive wall ^{*3}	4.1×10^{9}	2200 m	8.9×10^{12}	1780
Pumping holes	8.8×10 ⁵	2200 m	1.9×10^{9}	0.38
Flange	1×10^8	800	8×10^{10}	16
Bellows	4×10^{9}	800	3.2×10^{12}	640
Photon mask	1×10^{4}	800	8×10^{6}	0.0016
Gate valve	3×10^{9}	16	4.8×10^{10}	9.6
Movable mask*4	1×10^{12}	16	1.6×10^{13}	3200
Taper	3×10^{9}	72	2.2×10^{11}	44
BPM	N/A	400	N/A	N/A
IR chamber	N/A	1	N/A	N/A
Total			$30 \sim 40 \times 10^{12}$	6~8 MW

r = 90 mm

 $\sigma_{z} = 3 \text{ mm}$

*2 n₆=5000, f₀=1×10⁵ Hz, I₅=10 A

*3 Copper chamber with a radius of 25 mm

⁻⁴ 8 horizontal and 8 vertical masks

(2)他コンポーネントのWakeを考慮した再検討?

クラブ空洞の表面処理方法

SuperKEKB 建設スケジュール (2005.1.18)

Fi	scal Yea	20	006	20	07		20	800		2009				2010					2	011		2012	
Budget							SuperKEKB建設本予算																
KEKB Ring KEKB運					KB運	転 Shu							nutdown						Supe	SuperKEKB運転			
Dampi	ng Ring								建設					設置	Commiss			iong		定常運転			
Linac Upgrade																					e+ 8GeV		,
# of Units		its		2	2	2		2				14				14				14			v
RF U	pgrade																						
	0	D1								•											2 (C	rabs)	\rightarrow
	[D2																		2 (Crabs)		\rightarrow	
	0	D4	3 (6A)	-	→		\rightarrow \rightarrow				\rightarrow \rightarrow \rightarrow				\rightarrow \rightarrow			\rightarrow \rightarrow		14(14AH)		\rightarrow
	0	D5	3 (6A)	4 (6A)															10(2H+8L)		\rightarrow
	0	D7	5 (1	(A01	-	→		-	→			\rightarrow			\rightarrow				\rightarrow		10 (10AL)		\rightarrow
	[D8	5 (1	(A01	-	→		-	→		\rightarrow			\rightarrow				\rightarrow		10 (10AL)		\rightarrow	
	[D10	4 (4S)	-	→	\rightarrow				\rightarrow				\rightarrow				\rightarrow		6(6SH)		\rightarrow
	[D11	4 (4S)	-	→		\rightarrow		\rightarrow				\rightarrow				-	→	6(6SH)		\rightarrow	
	[DR													1(1A)					\rightarrow		\rightarrow	
	Klystro	n fab.	!	5	(6	7					7				6					5		0
施設																							
	建屋			建	屋建	設																	
	電気						建設																
	冷却水系							建設															
Vacuu	ım Upgra	ade					建設、設置																