B Physics at Super-High Luminosity A New Physics Story

Marco Ciuchini INFN Roma III

- 1 Flavour new physics story just began
- 2 Present and future (!) bounds on NP
- 3 What kind of NP do present bounds point to? a Minimal Flavour Violation b New Flavour and CPV in $3 \rightarrow 2$ transitions
 - The SUSY case
 - The SUSY-GUT case

thanks to M. Pierini and L. Silvestrini

B Physics at Super-High Luminosity A New Physics Story

Marco Ciuchini

INFN Roma III

- 1 Flavour new physics story just began
- 2 Present and future (!) bounds on NP
- 3 What kind of NP do present bounds point to? a Minimal Flavour Violation b New Flavour and CPV in $3 \rightarrow 2$ transitions
 - The SUSY case
 - The SUSY-GUT case

thanks to M. Pierini and L. Silvestrini

The old story ended...

 $\overline{\rho} = 0.190 \pm 0.044$ [0.100, 0.271]@95%

 $\overline{\eta} = 0.349 \pm 0.024$ [0.303, 0.396]@95%

Spectacular agreement between direct and indirect measurements $(\sin 2\beta)_{sides} = 0.732 \pm 0.044$ $(\sin 2\beta)_{ind} = 0.729 \pm 0.042$ $(\sin 2\beta)_{dir} = 0.725 \pm 0.037$ $\sin 2\beta = 0.728 \pm 0.028$

The UT in the late B-factory era

2005: A new story begins

No angles: $|V_{ub}/V_{cb}|, \Delta m_d, \Delta M_s, \varepsilon_K$ Angles only: sin2 β , cos2 β , sin2 α , γ

the parameter determination era ends the precision test/new physics era begins

redundant constraints on the triangle and test of new physics

Marco Ciuchini

The SM is an effective theory valid up to some scale Λ

$$\mathcal{L} = \mathcal{L}_{SM} + \Sigma_{k=1} C \cdot Q^{(k+4)} / \Lambda^{k}$$

• Gauge hierarchy problem: $\Lambda \sim 1 \text{ TeV}$

• Flavour physics: $\Lambda \sim 100-1000 \text{ TeV}$

"Tension" between new physics scales

The bright side

1. New particles produced at the LHC cannot have "generic" flavour properties

In a given NP framework, flavour- and CP-violating observables provide insights on the structure of NP (for ex.: Soft SUSY-breaking terms in the MSSM)

Complementary to NP searches at hadron colliders

2. Large effects from NP in loops are possible and "generically" expected in untested sectors

Flavour physics has a big potential for the indirect search of NP

Marco Ciuchini

Is the NP test already interesting?

Marco Ciuchini

Checking the Unitarity Clock now

Assumptions: (1) 3-generations unitarity (2) no new physics in tree-level processes Using only tree-level: γ and $|V_{ub}/V_{cb}|$. Results:

$$\overline{\eta} = \pm 0.41 \pm 0.05$$

 $sin2\beta = 0.782 \pm 0.065$

 -0.641 ± 0.087

$$\gamma$$
 = (65±18)° \cup (-115±18)°

$$\alpha$$
 = (87±15)° \cup (-46±15)°

Any model of new physics must satisfy these constraints

UTfit coll., hep-ph/0501199; Botella et al., hep-ph/0502133

Rechecking the Unitarity Clock in 10 years from now

$$\gamma = (60.0 \pm 1.5)^{\circ}$$

$$|V_{cb}| = (41.7\pm0.4) \times 10^{-3}$$

 $|V_{ub}| = (3.74\pm0.12) \times 10^{-3}$

$$\overline{\rho} = \pm 0.199 \pm 0.012$$

 $\overline{\eta} = \pm 0.345 \pm 0.013$

Amazing accuracy but clocks have always two hands

extrapolated experimental errors from hep-ph/0503261 or naïve scaling

NP in the UT: The "Brute Force" Strategy

- 1. Add most general NP to all sectors
- 2. Use all available info
- 3. Constrain simultaneously ρ,η and the NP parameters

Only possible thanks to the new measurements of CKM angles!!!

Botella et al., hep-ph/0502133; Agashe et al., hep-ph/0509117; UTfit coll., hep-ph/0509219. Previous attempts: Ciuchini et al., hep-ph/0307195; CKMfitter group, hep-ph/0406184; Ligeti, hep-ph/0408267.

The UT with NP in b/s -> d transitions

Hints for Model Building

Two classes of NP models are suggested by the UT fit already at present:

1. Models with no new sources of flavour and CP violation Minimal Flavour Violation (and variations)

2. Models with large new sources of flavour and CP violation confined to $b \rightarrow s$ transitions

Marco Ciuchini

1. Minimal Flavour Violation

Gabrielli, Giudice, NPB433 D'Ambrosio et al., NPB645

- No new source of flavour and CP violation
 NP contributions governed by SM Yukawa couplings
 Ex.: Constrained MSSM (MSUGRA), Universal Extra Dim.

 NP only modifies SM top contribution to FCNC & CPV
- 2a) One Higgs or small/moderate tanβ

 No new operators
 Full correlations among K and B decays

 2b) Large tanβ

 New operators
 Less correlations among K and B decays

The Universal Unitarity Triangle today Buras et al., PLB500

Angle measurements + $\Delta m_{\rm d}/\Delta m_{\rm s}$ unaffected by NP in MFV

$ar{ ho}$	0.258 ± 0.066	[0.107, 0.373]
$ar\eta$	0.319 ± 0.039	[0.249, 0.398]
$\sin 2eta$	0.726 ± 0.028	[0.668, 0.778]
$\alpha[^{\circ}]$	105 ± 11	[81, 123]
$\gamma[^\circ]$	51 ± 10	[34, 74]
$(\beta + \gamma)[^{\circ}]$	98 ± 12	[78, 122]

valid in any MFV model for any value of tanβ accuracy comparable to SM

UTfit Coll., hep-ph/0509219

The Universal Unitarity Triangle "tomorrow"

$\overline{ ho} \ \overline{\eta}$	0.200 ± 0.005 0.343 ± 0.003	[0.191, 0.209] [0.338, 0.349]
$\sin 2\beta$	0.725 ± 0.004	[0.718, 0.733]
$\alpha[^{o}]$	96.8 ± 0.7	[95.5, 98.1]
$\gamma[^{o}]$	59.7 ± 0.7	[58.4, 61.0]
$(\beta + \gamma)[^{o}]$	105.5 ± 0.5	[104.0, 107.0]

Determination of the UUT at the percent level

2.Flavour and CPV NP in b -> s transitions

-natural in any flavour models given the strong breaking of family SU(3)

Pomarol, Tommasini; Barbieri, Dvali, Hall; Barbieri, Hall; Barbieri, Hall, Romanino; Berezhiani, Rossi; Masiero, Piai, Romanino, Silvestrini; ...

-hinted at by v's in SUSY-GUTs

Baek, Goto, Okada, Okumura; Moroi; Akama, Kiyo, Komine, Moroi; Chang, Masiero, Murayama; Hisano, Shimizu; Goto, Okada, Shimizu, Shindou, Tanaka; ...

-experimental hints (?) in the timedependent CP asymmetries

Let's consider the SUSY option

NP in b -> s modes

b→ccs	World Average		0.69 ± 0.03
φK ⁰	Average	-★-	0.47 ± 0.19
η′ Κ ⁰	Average	*	0.50 ± 0.09
$f_{o} K_{S}$	Average		0.75 ± 0.24
π ⁰ K _S	Average	→ →	0.31 ± 0.26
π ⁰ π ⁰ K _S	Averag e \star		-0.84 ± 0.71
ωK _s	Average		0.63 ± 0.30
K⁺ K⁻ K⁰	Average	+★-	$0.51 \pm 0.14 \substack{+0.11 \\ -0.08}$
K _s K _s K _s	Average	⊢ ★-1	0.61 ± 0.23
-3	-2 -1	0 1	2

Marco Ciuchini

 ± 0.05

MSSM + generic soft SUSY-breaking terms Useful tool: the mass-insertion approximation SuperCKM basis + perturbative smass diagonalization > expansion parameters: $(\delta_{ij}^q)_{AB} \equiv \frac{(M_{ij}^2)_{AB}^{q}}{\widetilde{m}^2}$ All flavour-changing NP effects in the squark propagators $\begin{pmatrix} \delta_{ij}^{q} \\ AB \end{pmatrix}_{AB} = \{u, d\}, (A, B) = \{L, R\} \\ (\tilde{q}_{i})_{A} - - - - (\tilde{q}_{i})_{B} = \{i, j\}$

FCNC and CP violation impose model-independent bounds on the $\delta^{\prime}s$

NB: only dominant gluino contributions are considered

Marco Ciuchini

Constraints on the $\delta^{\prime}s$

gluinos contribute to rare decays only through (chromo)magnetic penguins (electro)penguin operators are suppressed

Bertolini et al., NPB353; Gabbiani et al., NPB477; Buras, Romanino, L.S., NPB520

strong constraints from the combination of $b \to s \gamma \text{ and } b \to s |^{+}|^{-} (both \text{ dominated by } C_{7}^{\text{eff}})$

Ciuchini et al; Hiller, PRD69; Gambino, Haisch, Misiak, PRL94

Updated results for

$$m_{ql} = m_{sq} = -\mu = 350 \text{ GeV}$$
, tan $\beta = 10$

$$BR(B \to X_{s}\gamma, E_{cut} = 1.8 \text{ GeV}) = (3.51 \pm 0.43) \times 10^{-4}$$

$$a_{CP}(B \to X_{s}\gamma) = 0.004 \pm 0.036$$

$$BR(B \to X_{s}l^{+}l^{-}, \text{low}) = (1.59 \pm 0.49) \times 10^{-6}$$

$$BR(B \to X_{s}l^{+}l^{-}, \text{high}) = (4.34 \pm 1.15) \times 10^{-7}$$

$$a_{CP}(B \to X_{s}l^{+}l^{-}) = -0.22 \pm 0.26$$

Today

$$BR(B \to X_{s}\gamma, E_{cut} = 1.8 \,\text{GeV}) = (3.73 \pm 0.02) \times 10^{-4}$$

$$a_{CP}(B \to X_{s}\gamma) = 0.000 \pm 0.005$$

$$BR(B \to X_{s}l^{+}l^{-}, \text{low}) = (2.40 \pm 0.04) \times 10^{-6}$$

$$BR(B \to X_{s}l^{+}l^{-}, \text{high}) = (3.91 \pm 0.09) \times 10^{-7}$$

$$a_{CP}(B \to X_{s}l^{+}l^{-}) = 0.000 \pm 0.015$$

NB: NNLO and FB asymmetry in B -> Xs II not yet implemented

Marco Ciuchini

SUSY-GUT's and LFV

If flavour symmetry is broken at a scale larger than M_{GUT} , squark and slepton masses unify, including off-diagonal terms i.e. δs

 $(\delta^{d}_{23})_{RR} \Leftrightarrow (\delta^{l}_{23})_{LL}$ quark FV \Leftrightarrow lepton FV

 $\tau \rightarrow \mu \gamma$, $\tau \rightarrow e \gamma$, and $\mu \rightarrow e \gamma$ probe different couplings \Rightarrow complementary

Conclusions

The precision test/new physics era of B physics just began. It requires high statistics and a careful assessment of the uncertainties to be successful Flavour physics probes the structure of NP models. A high-precision test program is like a NP genome project Present results point to either no new physics in Δ F=2 $b/s \rightarrow d$ transitions or models with (N)MFV. O(1) NP effects are still possible, yet MFV NP is better studied through correlations among different B (and K) decays Ample room for visible NP in $b \rightarrow s$ transitions: motivations from theory, more precise data needed Interplay between quark and lepton FV in SUSY-GUTs