

Aerogel RICH and TOP: status report

Peter Križan University of Ljubljana and J. Stefan Institute

Super B factory workshop, Frascati, March 16-18, 2006

March 17, 2006

Super B Workshop, Frascati

Peter Križan, Ljubljana

K/p separation at 4 GeV/c: $q_c(p)-q_c(K) \sim 23 \text{ mrad}$

measured: $s_0 \sim 13-14$ mrad

 \rightarrow 6s separation with N_{pe}~10

Beam test results with 2cm thick aerogel tiles: >4s K/p separation

Radiator with multiple refractive indices

How to increase the number of photons without degrading the resolution?

Super B Workshop, Frascati

Peter Križan, Ljubljana

Focusing configuration – data, 2004

....

Multiple radiator: Optimisation of radiator parameters

0

→robust design, little influence from variation in n_2 - n_1 and D_2/D_1

March 17, 2006

Minimized: error per track

$$\sigma_{track} = \frac{1}{\sqrt{N_{det}}} \sqrt{\sigma_{emp}^{2} + \sigma_{det}^{2} + \sigma_{rest}^{2}}$$
vary parameters n₂- n₁, D₀, D₂/D₁

$$\int_{0}^{1} \frac{s_{track}}{s_{track}}$$
n₂- n₁

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 refractive index difference

→physics/0603022

Comparison with the data

Single photon sigma vs n₂- n₁

Multiple radiators: optimized

Number of layers	one	two	three	four
Thickness (cm)	1.9	3.2	4.4	5.6
Single photon s ₀	12.8	12.5	12.6	12.8
N _p	5.7	9.0	11.9	14.7
S track	5.4	4.2	3.7	3.3

→ The improvement in S_{track} comes from the increase in the number of photons.

Photon detectors for the aerogel RICH requirements and candidates

Need: Operation in a high magnetic field (1.5T) Pad size ~5-6mm

Candidates:

- MCP PMT (Burle 85011)
- large active area HAPD of the proximity focusing type

Problems: sealing the tube at the window-ceramic box interface, photocathode activation changes the properties of APD.

Photon detector R&D: Burle MCP-PMT

BURLE 85011 MCP-PMT:

- •multi-anode PMT with 2 MCPs
- •25 mm pores
- bialkali photocathode
- •gain ~ 0.6 x 10⁶
- collection efficiency ~ 60%
- box dimensions ~ 71mm square
- •64(8x8) anode pads

March 17, 2006

pitch ~ 6.45mm, gap ~ 0.5mm
active area fraction ~ 52%

count rates - all channels: charge sharing at pad boundaries

→Proc. IEEE NSS 2004

Resolution and number of photons (clusters)

- s₁~13 mrad (single cluster)
- number of clusters per track N ~ 4.5
- s₁ ~ 6 mrad (per track)
- -> ~ 4 s p/K separation at 4 GeV/c

Open questions

Operation in high magnetic field:

- •the present tube with 25mm pores only works up to 0.8T, for 1.5T need ~10mm
- •10mm version with 4 channels available since June, tests done (J. Va'vra)

Number of photons per ring: too small. Possible improvements:

- •bare tubes (52%->63%)
- increase active area fraction (bare tube 63%->85%)
- increase the photo-electron collection efficiency

(from 60% at present up to 70%)

- -> Extrapolation from the present data 4.5 ->8.5 clusters per ring
- s₁: 6 mrad -> 4.5 mrad (per track)
 - -> >5 s p/K separation at 4 GeV/c

Aging of MCP-PMTs?

Ring Imaging Cherenkov counter with precise measurement of the Time Of Propagation (and TOF)

TOP baseline design

- Radiator: Quartz bar of 255cm^L × 40cm^w × 2cm^T × 18 units in ϕ segmented at $\theta = 46^{\circ}$ to reduce chromatic dispersion error
- Photon detector: Multi-anode MCP-PMT at three readout planes SL10 (R&D w/ HPK) : 5mm pitch linear array, $\sigma_{TTS} \sim 30$ ps.

Status of TOP Counter, 2005.04.20 Super B-Factory Workshop - p.4/22

Tests on the bench: amplification and time resolution in high magnetic field.

- 3 MCP-PMTs studied: Burle (25 mm pores), BINP (6mm pores), Hamamatsu SL10 (6 and 10mm pores)
 - All: good time resolution at B=0, 25mm pore tube does not work at 1.5T → NIM A528 (2004) 763

SL10: cross-talk problem solved by segmenting the electrodes at the MCP

MCP ageing

Study tubes with and without protective AI foil (stops feedback ions to reach the photocathode, but reduces the photo-electron collection efficiency by 60%) from two producers, Hamamatsu and BINP, with bi-alkali phocathodes.

TOP counter MC

Expected performance with: bi-alkali photocathode: <4s p/K separation at 4GeV/c (← chromatic dispersion)

with GaAsP photocathode: >4s p/K separation at 4GeV/c

GaAsP vs bialkali:

Timing and pulse height spectra

TTS of MCP-PMt with GaAs/GaAsP may be worse due to the thickness of photocathode (1micron instead of 10nm). →OK

ADC: Gain $\sim 1.0 \times 10^6$

ADC(p.c.=multi alkali)

100 120 140 160 180 200 adc

 $Gain \sim 1.2 \times 10^{\circ}6$

(ATTN=4dB)

stuase for #

200

150

100

50

ADC(p.c.=GaAsP)

160 180 adc

200 220 240 0.25pC/bit

 $Gain \sim 1.3 \times 10^{6}$

(ATTN=6dB)

events 5 # 600

500

400

300

200

100

0 100 120 140

Pulse height spectra: OK

- Square-shape MCP-PMT with GaAsP photo-cathode
- First prototype
 - 2 MCP layers
 - f10mm hole
 - 4ch anodes
 - Slightly larger structure
 - Less active area

Target structure

- •Enough gain to detect single photo-electron
- •Good time resolution (TTS=42ps) for single p.e.

-Slightly worse than single anode MCP-PMT (TTS=32ps)

•Next: check the performance in detail, increase active area frac., ageing

- Aerogel RICH: proof of principle OK, new ways found how to increase the number of photons (focusing radiator); photon detectors for 1.5T under development/study; progress in aerogel production methods (water jet cutting)
- TOP: MC study: reduce cromatic error; MCP PMT operation at 1.5T OK; MCP PMT with GaAsP tested, similar time resolution; ageing tests →need Al foil

at fixed total thickness $D_0 = 4$ cm and refractive index difference dn=0.009

refractive index difference n_2 - n_1

at fixed total thickness $D_0 = 4$ cm

 \rightarrow robust design, little influence from variation in n₂- n₁ and k

Photon detectors for the aerogel RICH requirements and candidates

Needs:

- Operation in high magnetic field (1.5T)
- High efficiency at >350nm
- Pad size ~5-6mm

Candidates:

- large area HPD of the proximity focusing type
- MCP PMT (Burle 85011)

Development and testing of photon detectors for 1.5 T

Candidate: large area HPD of the proximity focusing type

HPD development

59mm x 59mm active area (65%), 12x12 channels

Ceramic HPD box

Proc. IEEE NSS 2004

Study uniformity of the sensitivity over the surface

count rates - all channels: charge sharing at pad boundaries

single channel response:uniform over pad areaextends beyond pad area (charge

charge sharing at pad boundaries

 slice of the counting rate distribution including the central areas of 8 pads (single channels colored, all channels black)

Proc. IEEE NSS 2004

4ch linear array MCP-PMT

SL10 1ch 2ch 3ch 4ch 22 (effective area) 27.5

Lifetime: Q.E. of HPK

- Measurement Q.E. lifetime
- ~ 700 mC/cm² output for one year operation. (BG rate ×20)
- Rapid efficiency drop for PMT w/o Al layer
 Need Al layer

....

⇒ Need effort (Vacuum level)

Lifetime: Gain

- Gain is almost stable (> $80\%@700mC/cm^2$)
- If gain drops, we can raise high voltage up to recover it.

Status of TOP Counter, 2005.04.20 Super B-Factory Workshop - p.13/22

GaAsP photo-cathode

- High quantum efficiency
- Sensitive at longer wavelengths

MCP-PMT Performance

BELLE

TTS of MCP-PMT w/ GaAs/GaAsP may be worse due to the thickness of

photo-cathode. \implies should be checked

• multi(bi)-alkali(HPK/BINP) \sim 100 Å

9 GaAsP (HPK) $\sim \mu$ m

Measured MCP-PMT

	HPK	BINP
photo-	multi-alkali	multi-alkali
cathode	GaAsP	(GaAs)
MCP ch ϕ	6µ	ιm
# of MCP	2stage	
anode	single	

- Enough gain to detect single photo-electron
- Good time resolution (TTS=42ps) for single p.e.
 - Slightly worse than single anode MCP-PMT (TTS=32ps)
- Next
 - Check the performance in detail
 - Develop with the target structure

- Time resolution becomes worse due to cross talk of neighbor signals.
- To reduce cross talk, divide electrodes on MCP.
- **9** S/N is improved from \sim 5 to \sim 10.

