Search for *CP*/*T*-violation in the tau sector at a superb τ factory τ Electric Dipole Moment & similia

Eugenio Paoloni

on behalf of the Pisa group

Flavour In The Era Of The LHC

E. Paoloni (Università di PISA & INFN)

≧▶◀≧▶ 볼 ∽QQC LNF Mar. 2006 1/15

Outline

ightarrow au electric dipole moment

- Motivation and present status
- How to improve it in a significant way?

Lorentz structure of the au decay vertex

- 3 T violation in au decays
- 4 conclusions and plans

・ 同 ト ・ ヨ ト ・ ヨ

Motivation of the search

The electric dipole moment interaction

$$\mathcal{H}_{i}=\textit{ie}rac{\textit{F}_{ au}}{2m_{ au}}ar{\psi}\sigma^{\mu
u}\gamma^{5}\psi\textit{F}_{\mu
u}$$

is the lowest dimension gauge invariant T odd operator that couple the photon (Z_0) with the τ current.

SM generates such interaction only at a very high order of the perturbative expansion (i.e. $F_{\tau} \ll 1$).

Possibility for the "New Physics" to stay on the stage.

PDG 2004 e, μ $d_e = (0.07 \pm 0.07) \times 10^{-26} e \text{ cm}$ $d_\mu = (3.7 \pm 3.4) \times 10^{-19} e \text{ cm}$

$$\Re (d_{\tau}) = (-0.22 \text{ to } 0.45) \times 10^{-16} \text{ cm}$$

$$\Im (d_{\tau}) = (-0.25 \text{ to } 0.01) \times 10^{-16} \text{ cm}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Belle measurement of the τ EDM (hep-ex/0210066)

Belle searched for CP violating effects in

 $e^+e^- \rightarrow \gamma^{\star} \rightarrow \tau^+\tau^-$

analyzing $26.8 \cdot 10^6 \tau$ pairs. Sample composition:

Yield Purity (%) Background mode (%)250,948 96.6 ± 0.1 $2\gamma \rightarrow \mu\mu(1.9), \ \tau\tau \rightarrow e\pi(1.1).$ $e\mu$ $\tau \tau \to e\rho(6.0), eK(5.4), e\mu(3.1), eK^*(1.3).$ $e\pi$ 132,574 82.5 ± 0.1 123,520 80.6 ± 0.1 $\tau \tau \to \mu \rho(5.7), \ \mu K(5.3), \ \mu \mu(2.9), \ 2\gamma \to \mu \mu(2.0).$ $\mu\pi$ $\tau \tau \to e \pi \pi^0 \pi^0(4.4), \ e K^*(1.7).$ 240,501 92.4 ± 0.1 $e\rho$ 91.6 ± 0.1 $\tau \tau \to \mu \pi \pi^0 \pi^0(4.2), \ \mu K^*(1.6), \ \pi \rho(1.0).$ 217,156 $\mu\rho$ 110,414 77.7 ± 0.1 $\tau \tau \to \rho \rho(5.1), \ K \rho(4.9), \ \pi \pi \pi^0 \pi^0(3.8), \ \mu \rho(2.7).$ $\pi \rho$ $\tau \tau \to \rho \pi \pi^0 \pi^0(8.0), \ \rho K^*(3.1).$ 93.016 86.2 ± 0.1 $\rho\rho$ $\tau \tau \to \pi \rho(9.2), \pi K(9.2), \pi \mu(4.7), \pi K^*(2.0).$ 28.348 70.0 ± 0.2 $\pi\pi$ V) U (

Systematic \sim statistical with only 25 millions τ -pairs

Belle measured T-odd correlations among the momenta of the decay products of the $\tau^+\tau^-$.

 $-0.22 < \Re(d_{\tau}) < 0.45(10^{-16} \,\mathrm{e\,cm}) \quad 95\%$ C.L

$Re(d_{\tau})$	$e\mu$	$e\pi$	$\mu\pi$	$e\rho$	μho	πho	ρρ	$\pi\pi$
Mismatch of distribution	0.80	0.58	0.70	0:11	0.15	0.21	0.16	0.06
Charge asymmetry	0.00	0.01	0.01	0.01	0.01	0.01	_	-
Background variation	0.43	0.12	0.07	0.07	0.08	0.03	0.04	0.05
Momentum reconstruction	0.16	0.09	0.24	0.04	0.06	0.06	0.04	0.45
Detector alignment	0.02	0.02	0.01	0.00	0.01	0.01	0.02	0.03
Radiative effects	0.09	0.04	0.02	0.01	0.01	0.02	0.00	0.16
Total	0.93	0.60	0.74	0.14	0.18	0.22	0.17	0.48

E. Paoloni (Università di PISA & INFN)

LNF Mar. 2006 5/15

τ EDM with polarized e⁺e⁻ beams (Phys. Rev. D<u>51</u> 5996) Ananthanarayan & Rindani proposed in 1995 a very clever method: use an e⁻ beam with tunable longitudinal polarization P

$$\mathbf{e}^{-}(\mathbf{p}_{-}) + \mathbf{e}^{+}(\mathbf{p}_{+}) \rightarrow \gamma^{\star} \rightarrow \tau^{+} + \tau^{-}$$

 $au^{-} \rightarrow H_{A}(\mathbf{q}_{-}) +
u_{ au} \quad au^{+} \rightarrow H_{B}(\mathbf{q}_{+}) + ar{
u}_{ au}$

• under *CP*:

$$\mathbf{p}_+ \leftrightarrow -\mathbf{p}_- \quad \mathbf{q}_+ \leftrightarrow -\mathbf{q}_-$$

• measure the mean value of the CP odd observables:

 $\mathcal{O}_1 = \hat{\mathbf{p}}_+ \cdot (\mathbf{q}_+ imes \mathbf{q}_-) \propto \Re(\mathbf{d}_ au) \quad \mathcal{O}_2 = \hat{\mathbf{p}}_+ \cdot (\mathbf{q}_+ + \mathbf{q}_-) \propto \Im(\mathbf{d}_ au)$

• compare $\langle O_i \rangle$ measured with opposite polarizations

$$\Re(d_{ au}) \propto \langle O_1
angle_P - \langle O_1
angle_{-P}$$

A D A A D A A D A A D A

τ EDM with polarized e⁺e⁻ beams (Phys. Rev. D<u>51</u> 5996)
 Ananthanarayan & Rindani proposed in 1995 a very clever method:
 use an e⁻ beam with tunable longitudinal polarization P

$$\mathbf{e}^{-}(\mathbf{p}_{-}) + \mathbf{e}^{+}(\mathbf{p}_{+}) \rightarrow \gamma^{\star} \rightarrow \tau^{+} + \tau^{-}$$

 $\tau^{-} \rightarrow H_{A}(\mathbf{q}_{-}) + \nu_{\tau} \quad \tau^{+} \rightarrow H_{B}(\mathbf{q}_{+}) + \bar{\nu}_{\tau}$
CP:

$$\mathbf{p}_+ \leftrightarrow -\mathbf{p}_- \quad \mathbf{q}_+ \leftrightarrow -\mathbf{q}_-$$

• measure the mean value of the CP odd observables:

 $\mathcal{O}_1 = \hat{\mathbf{p}}_+ \cdot (\mathbf{q}_+ imes \mathbf{q}_-) \propto \Re(d_ au) \quad \mathcal{O}_2 = \hat{\mathbf{p}}_+ \cdot (\mathbf{q}_+ + \mathbf{q}_-) \propto \Im(d_ au)$

• compare $\langle O_i \rangle$ measured with opposite polarizations

 $\Re(d_{ au}) \propto \langle O_1
angle_P - \langle O_1
angle_{-P}$

under

(D) (B) (E) (E) (E)

τ EDM with polarized e⁺e⁻ beams (Phys. Rev. D<u>51</u> 5996)
 Ananthanarayan & Rindani proposed in 1995 a very clever method:
 use an e⁻ beam with tunable longitudinal polarization P

$$\mathbf{e}^{-}(\mathbf{p}_{-}) + \mathbf{e}^{+}(\mathbf{p}_{+}) \rightarrow \gamma^{\star} \rightarrow \tau^{+} + \tau^{-}$$

 $au^{-} \rightarrow H_{A}(\mathbf{q}_{-}) +
u_{ au} \quad au^{+} \rightarrow H_{B}(\mathbf{q}_{+}) + ar{
u}_{ au}$

• under *CP*:

$$\mathbf{p}_+ \leftrightarrow -\mathbf{p}_- \quad \mathbf{q}_+ \leftrightarrow -\mathbf{q}_-$$

measure the mean value of the CP odd observables:

 $O_1 = \hat{\mathbf{p}}_+ \cdot (\mathbf{q}_+ imes \mathbf{q}_-) \propto \Re(\mathbf{d}_{\tau}) \quad O_2 = \hat{\mathbf{p}}_+ \cdot (\mathbf{q}_+ + \mathbf{q}_-) \propto \Im(\mathbf{d}_{\tau})$

• compare $\langle O_i \rangle$ measured with opposite polarizations

 $\Re(d_{ au}) \propto \langle O_1
angle_P - \langle O_1
angle_{-P}$

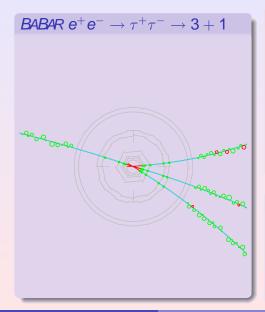
 τ EDM with polarized e^+e^- beams (Phys. Rev. D<u>51</u> 5996) Ananthanarayan & Rindani proposed in 1995 a very clever method: • use an e^- beam with tunable longitudinal polarization P

$$\mathbf{e}^{-}(\mathbf{p}_{-}) + \mathbf{e}^{+}(\mathbf{p}_{+}) \rightarrow \gamma^{\star} \rightarrow \tau^{+} + \tau^{-}$$

 $\tau^{-} \rightarrow H_{A}(\mathbf{q}_{-}) + \nu_{\tau} \quad \tau^{+} \rightarrow H_{B}(\mathbf{q}_{+}) + \bar{\nu}_{\tau}$

• under *CP*:

$$\mathbf{p}_+ \leftrightarrow -\mathbf{p}_- \quad \mathbf{q}_+ \leftrightarrow -\mathbf{q}_-$$


measure the mean value of the CP odd observables:

$$\mathcal{O}_1 = \hat{\mathbf{p}}_+ \cdot (\mathbf{q}_+ imes \mathbf{q}_-) \propto \Re(\mathbf{d}_{ au}) \quad \mathcal{O}_2 = \hat{\mathbf{p}}_+ \cdot (\mathbf{q}_+ + \mathbf{q}_-) \propto \Im(\mathbf{d}_{ au})$$

• compare $\langle O_i \rangle$ measured with opposite polarizations

$$\Re(d_{ au}) \propto \langle O_1
angle_P - \langle O_1
angle_{-P}$$

Experimental approach

Event selection

- Low multiplicity
- Missing momentum
- Missing energy
- Particle id.

Select only

 $\tau \to \pi \nu \quad \tau \to \rho \nu$

Observable

• identify the positive and the negative track

 $O_1 = \left| \mathbf{p}_{\perp}^+ \right| \left| \mathbf{p}_{\perp}^- \right| \sin \left(\phi_+ - \phi_- \right)$

Experimental approach

Event selection

- Low multiplicity
- Missing momentum
- Missing energy
- Particle id.

Select only

 $\tau \to \pi \nu \quad \tau \to \rho \nu$

Observable

• identify the positive and the negative track

 $O_1 = \left| \mathbf{p}_{\perp}^+ \right| \left| \mathbf{p}_{\perp}^- \right| \sin \left(\phi_+ - \phi_- \right)$

Experimental approach

Event selection

- Low multiplicity
- Missing momentum
- Missing energy
- Particle id.

Select only

 $\tau \to \pi \nu \quad \tau \to \rho \nu$

Observable

• identify the positive and the negative track

 $O_1 = \left| \mathbf{p}_{\perp}^+ \right| \left| \mathbf{p}_{\perp}^- \right| \sin \left(\phi_+ - \phi_-
ight)$

		P	
P	$c_{AB}~({ m GeV^2})$	$\sqrt{\langle O_1^2 angle} \; ({ m GeV}^2)$	$ \delta \operatorname{Re} d_{\tau}^{\gamma} \ (e \operatorname{cm})$
		(a)	
0.00	-1.58×10^{-5}	1.78	5.71×10^{-15}
-0.62	$-8.19 imes10^{-1}$	1.78	$1.10 imes 10^{-17}$
+0.62	$8.15 imes10^{-1}$	1.78	$1.11 imes 10^{-17}$
-0.71	$-9.37 imes10^{-1}$	1.78	$9.65 imes 10^{-18}$
+0.71	$9.33 imes10^{-1}$	1.78	9.67×10^{-18}
-1.00	-1.32	1.78	6.86×10^{-18}
+1.00	1.31	1.78	6.86×10^{-18}
		(b)	
0.00	-3.91×10^{-4}	1.66	1.57×10^{-14}
-0.62	$-6.36 imes10^{-1}$	1.66	$9.63 imes10^{-18}$
+0.62	$6.35 imes10^{-1}$	1.66	$9.64 imes10^{-18}$
-0.71	$-7.29 imes10^{-1}$	1.66	$8.41 imes10^{-18}$
+0.71	$7.27 imes10^{-1}$	1.66	8.42×10^{-18}
-1.00	-1.03	1.66	$5.98 imes10^{-18}$
+1.00	1.02	1.66	5.98×10^{-18}
		(c)	
0.00	$-7.03 imes10^{-5}$	1.51	5.76×10^{-14}
-0.62	$-3.63 imes10^{-1}$	1.51	$1.12 imes 10^{-17}$
+0.62	$3.62 imes10^{-1}$	1.51	1.12×10^{-17}
-0.71	$-4.15 imes10^{-1}$	1.51	9.77×10^{-18}
+0.71	$4.15 imes10^{-1}$	1.51	$9.77 imes10^{-18}$
-1.00	$-5.85 imes10^{-1}$	1.51	$6.93 imes10^{-18}$
E. Paoloni	(Università di PISA & INFN)		LNF Mar. 2006 8 / 1

Sensitivities ($10^7 \tau$ – pairs)

P-weighted Sensitivities ($10^7 \tau$ – pairs)

	$c_{AB}~({ m GeV}^2)$	$\sqrt{\langle O_1^2 angle} \; ({ m GeV}^2)$	$ \delta { m Re} d^\gamma_ au \; (e { m cm})$
		(a)	
$\pi\pi$	$1.72 imes10^3$	3.46	$2.61 imes 10^{-19}$
πρ	$1.34 imes10^3$	2.38	$1.68 imes 10^{-19}$
ρρ	7.62×10^{2}	1.48	$1.33 imes10^{=19}$
	$c_{AB} ({ m GeV})$	$\sqrt{\langle O_2^2 angle} \; ({ m GeV})$	$ \delta{ m Im} d_ au^\gamma (e{ m cm})$
$\pi\pi$	$2.49 imes10^{-1}$	1.19	$6.20 imes10^{-16}$
πho	$1.71 imes10^{-1}$	1.28	7.03×10^{-16}
ρρ	$9.35 imes10^{-2}$	1.15	8.39×10^{-16}

$$c_{AB} \cdot \Re(d_{\tau}) = \frac{e}{\sqrt{s}} \left[\langle O_1 \rangle_P - \langle O_1 \rangle_{-P} \right]$$

- Most systematic effects should cancels in $\langle O_1 \rangle_P \langle O_1 \rangle_{-P}$
- With a sample in excess of $10^{10}\tau$ pairs it seems possible to enter in the very high precision realm $d_{\tau} \sim 10^{-20} e \,\mathrm{cm}$

(日) (日) (日) (日) (日)

P-weighted Sensitivities ($10^7 \tau$ – pairs)

	$c_{AB} \ ({ m GeV}^2)$	$\sqrt{\langle O_1^2 angle} \; ({ m GeV}^2)$	$ \delta { m Re} d_ au^\gamma (e { m cm})$
		(a)	
ππ	$1.72 imes10^3$	3.46	$2.61 imes 10^{-19}$
πρ	$1.34 imes10^3$	2.38	1.68×10^{-19}
ρρ	$7.62 imes 10^{2}$	1.48	$1.33 imes10^{49}$
	$c_{AB}~({ m GeV})$	(b) $\sqrt{\langle O_2^2 \rangle}$ (GeV)	$ \delta{ m Im} d^\gamma_ au \;(e{ m cm})$
ππ	$2.49 imes10^{-1}$	1.19	$6.20 imes 10^{-16}$
	1.70×10^{-1}	1.28	$7.03 imes 10^{-16}$
πho			8.39×10^{-16}
ρρ	$9.35 imes10^{-2}$	1.15	8.39 × 10

$$c_{AB} \cdot \Re(d_{\tau}) = \frac{e}{\sqrt{s}} \left[\langle O_1 \rangle_P - \langle O_1 \rangle_{-P} \right]$$

• Most systematic effects should cancels in $\langle O_1 \rangle_P - \langle O_1 \rangle_{-P}$

• With a sample in excess of $10^{10}\tau$ pairs it seems possible to enter in the very high precision realm $d_{\tau} \sim 10^{-20} e \,\mathrm{cm}$

(日) (日) (日) (日) (日)

P-weighted Sensitivities ($10^7 \tau$ – pairs)

	$c_{AB} \ ({ m GeV}^2)$	$\sqrt{\langle O_1^2 angle} ~({ m GeV}^2)$	$ \delta { m Re} d_ au^\gamma (e { m cm})$
		(a)	
ππ	$1.72 imes10^3$	3.46	$2.61 imes 10^{-19}$
$\pi \rho$	$1.34 imes10^3$	2.38	1.68×10^{-19}
ρρ	7.62×10^{2}	1.48	$1.33 imes10^{49}$
	c_{AB} (GeV)	(b) $\sqrt{\langle O_2^2 \rangle}$ (GeV)	$ \delta{ m Im} d_ au^\gamma \;(e{ m cm})$
ππ	$2.49 imes10^{-1}$	1.19	$6.20 imes 10^{-16}$
πho	$1.71 imes10^{-1}$	1.28	7.03×10^{-16}
ρρ	$9.35 imes10^{-2}$	1.15	8.39×10^{-16}

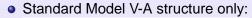
$$c_{AB} \cdot \Re(d_{\tau}) = \frac{e}{\sqrt{s}} \left[\langle O_1 \rangle_P - \langle O_1 \rangle_{-P} \right]$$

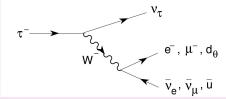
- Most systematic effects should cancels in $\langle O_1\rangle_{P}-\langle O_1\rangle_{-P}$
- With a sample in excess of $10^{10}\tau$ pairs it seems possible to enter in the very high precision realm $d_{\tau} \sim 10^{-20} e \,\mathrm{cm}$

- A very high luminosity e^+e^- machine with polarizable beams.
- A preliminary study to ascertain to robustness of the observables with respect to systematic effects.
- A dedicated system to measure the beam polarization?
- A tracking system with efficiency as uniform as possible in azimuthal and polar angle ...and very well aligned to reduce biases on reconstructed momenta.
- An hermetic detector to better reject backgrounds and cross-feeds.
- A Monte Carlo generator able to take into account spin correlations
- Psychological support and enthusiasm from the theoretical side.

- A very high luminosity e^+e^- machine with polarizable beams.
- A preliminary study to ascertain to robustness of the observables with respect to systematic effects.
- A dedicated system to measure the beam polarization?
- A tracking system with efficiency as uniform as possible in azimuthal and polar angle ...and very well aligned to reduce biases on reconstructed momenta.
- An hermetic detector to better reject backgrounds and cross-feeds.
- A Monte Carlo generator able to take into account spin correlations
- Psychological support and enthusiasm from the theoretical side.

- A very high luminosity e^+e^- machine with polarizable beams.
- A preliminary study to ascertain to robustness of the observables with respect to systematic effects.
- A dedicated system to measure the beam polarization?
- A tracking system with efficiency as uniform as possible in azimuthal and polar angle ...and very well aligned to reduce biases on reconstructed momenta.
- An hermetic detector to better reject backgrounds and cross-feeds.
- A Monte Carlo generator able to take into account spin correlations
- Psychological support and enthusiasm from the theoretical side.


- A very high luminosity e^+e^- machine with polarizable beams.
- A preliminary study to ascertain to robustness of the observables with respect to systematic effects.
- A dedicated system to measure the beam polarization?
- A tracking system with efficiency as uniform as possible in azimuthal and polar angle ...and very well aligned to reduce biases on reconstructed momenta.
- An hermetic detector to better reject backgrounds and cross-feeds.
- A Monte Carlo generator able to take into account spin correlations
- Psychological support and enthusiasm from the theoretical side.

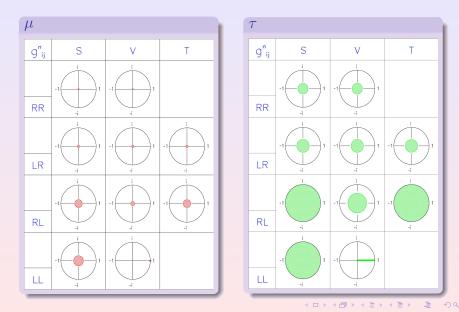

- A very high luminosity e^+e^- machine with polarizable beams.
- A preliminary study to ascertain to robustness of the observables with respect to systematic effects.
- A dedicated system to measure the beam polarization?
- A tracking system with efficiency as uniform as possible in azimuthal and polar angle ...and very well aligned to reduce biases on reconstructed momenta.
- An hermetic detector to better reject backgrounds and cross-feeds.
- A Monte Carlo generator able to take into account spin correlations
- Psychological support and enthusiasm from the theoretical side.

- A very high luminosity e^+e^- machine with polarizable beams.
- A preliminary study to ascertain to robustness of the observables with respect to systematic effects.
- A dedicated system to measure the beam polarization?
- A tracking system with efficiency as uniform as possible in azimuthal and polar angle ...and very well aligned to reduce biases on reconstructed momenta.
- An hermetic detector to better reject backgrounds and cross-feeds.
- A Monte Carlo generator able to take into account spin correlations
- Psychological support and enthusiasm from the theoretical side.

- A very high luminosity e^+e^- machine with polarizable beams.
- A preliminary study to ascertain to robustness of the observables with respect to systematic effects.
- A dedicated system to measure the beam polarization?
- A tracking system with efficiency as uniform as possible in azimuthal and polar angle ...and very well aligned to reduce biases on reconstructed momenta.
- An hermetic detector to better reject backgrounds and cross-feeds.
- A Monte Carlo generator able to take into account spin correlations
- Psychological support and enthusiasm from the theoretical side.

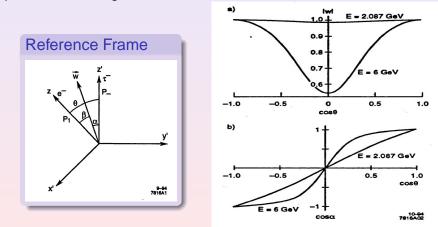
au leptonic decays: what we believe

$$\mathcal{L}_{cc} = rac{g}{2\sqrt{2}} W^{\dagger}_{\mu} \sum_{l} ar{
u}_{l} \gamma^{\mu} (1-\gamma_{5})l + \mathrm{h.c.}\,,$$


no contributions from other 4-Fermion contact interactions:

$$\mathcal{H} = 4 \frac{G_{l'l}}{\sqrt{2}} \sum_{n,\epsilon,\omega} g_{\epsilon\omega}^n \left[\overline{l'_{\epsilon}} \Gamma^n(\nu_{l'})_{\sigma} \right] \left[\overline{(\nu_l)_{\lambda}} \Gamma_n l_{\omega} \right] ,$$

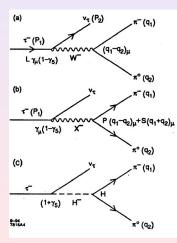
3


< ロ > < 同 > < 回 > < 回 > .

Leptonic decays: what we know

T violation in τ decays (Yung Su Tsai)

 e^+e^- polarization allows the search for *CP/T* violation in τ decays. The τ pairs produced with polarized beams have a significant spin polarization along the beam line.



◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ →

T odd observables in τ decays (Yung Su Tsai)

One can search for *CP* violation in the decay:

$$\tau^- \to \pi^- \pi^0 \nu_\tau$$

Observable T odd: $\mathbf{w} \cdot (\mathbf{q_1} \times \mathbf{q_2})$

or *CPT* violation in $\tau \rightarrow \pi \nu$

Observable

CPT odd:

 $\mathbf{w} \cdot \mathbf{q}_{\pi}$

A (1) > A (1) > A

-∢ ≣ ▶

Conclusions

- τ Electric dipole moment at a superb τ factory looks very interesting (if not exciting!)
- I plan to ascertain the robustness of the Ananthanarayan & Rindani observables against systematic effects and report at the next meeting
- CP violation in τ decays needs some theoretical effort: what are the less irrelevant operators involved? What is the estimated size of the effect?

4 E N 4 E N 4 E N 4 E N E