

Fundamental Parameters

• The first fundamental parameter is the damping time, determining energy loss/turn U_0 :

$$\tau_{d,x} = \frac{2}{J_x} \frac{E}{U_0} \tau_{rev} = \frac{2}{J_x} \frac{\rho}{88.5E^3} \tau_{rev}$$

- For 10 ms damping and 2200 m length:
 - LER (4GeV): U₀=5.6 MeV, HER (7 GeV): 9.9 MeV
 - bending radii: 21.5 m (1.1T) 4 m (3.3T)
 (assuming no wigglers or other "tricks")
- S.r. power:
 - 15+8.5=23.5 MW for 1.5 A in each ring

U. Wienands, SLAC-PEP-II SuperB Workshop Frascati, 16-Mar-06 - > "Wal-plug power" \approx 47 MW for the rf

Scaling with Ring Size

- τ_d scales with *R* for fixed ρ
 - If spec. for τ_d independent of τ_{rev} this strongly discourages large rings
- If we let τ_d go up as *R* goes up then s.r. power is independent of size
 - One may argue this is the correct scaling (bunches collide less often).
- In the following, the latter scaling is assumed to hold.

U. Wienands, SLAC-PEP-II

SuperB Workshop Frascati, 16-Mar-06

The Beam Emittance

• The desired emittance sets the bending angle/cell:

$$\varepsilon_x \ge \frac{1}{4\sqrt{15}} C_q \, \frac{\gamma^2 \Theta_D^3}{J_x}$$

("=" for a TME cell)

- We want about 0.4 nmr for each beam $- > \Theta/\text{cell} \approx 3.5^\circ (4 \text{ GeV}, \text{ again}, \text{TME assumed})$ $2.5^\circ (7 \text{ GeV}, \text{TME})$
 - > length is ≈1 m for the HER but ≈.26 m for the LER $B \approx 1.1$ T ≈ 3.3 T
- The HER magnet looks reasonable The LER magnet might be buildable as superferric magnet

Lattice Issues

- TME cells have been built for light sources
 - small dispersion => strong sextupoles => bad acceptance
 - dipoles can get rather short & strong, can become hard to build
- Alternative: use wigglers
 - low emittance by weak, long dipoles, wiggler sets damping time
 - wigglers have nonlinearities => acceptance issues
 - high E-loss in wiggler(s) => s.r. handling issues (MW power)
- Alternative 2: "mini wigglers" at each dipole
 - realistic dipole fields & lengths, s.r. more manageable
 - small dispersion & acceptance problems remain.

Lattice Example 3: mini Wiggler

Total length 2.2 km mWiggler: 0.6 m period, 120 m total length

At 4 GeV: td = 7 ms ex = 1.2 (0.5) nmr

Bunch Length

- For \leq 4 mm bunch length:
 - wiggler lattices: $\alpha \approx 3E-4$, $V_{rf} \approx 23...30$ MV
 - pure TME or mini-wiggler: $\alpha \approx 2E-5$, $V_{rf} \approx 6$ MV
- ... and synchrotron tune
 - $v_s \approx .033$ (wiggler), .0024 (TME, mini-wiggler)
- The low rf voltage for the TME looks attractive, however, beam-loading maybe overwhelming
 - only .4 MV over voltage (6-5.6)
 - likely need more volts to deal with bunch lengthening

Lattice Comparison

	at 3.1 GeV	at 4 GeV		
Parameter	PEP-II LER	PPA (Cai)	OTW (Kuroda)	mWiggler Unit
circumference	2.2	2.8	3.2	2.2 km
X tune	36	48	45	72
Y tune	35	48	24	24
momentum comp.	0.00124	0.00028	0.00036	0.00003
X damping time	≈65	39	24	7 ms
X emittance	24	0.28	0.26	1 (0.5)• nmr
dP/P	6.40E-04	1.00E-03	1.10E-03	1.20E-03
Main dipole field	10	1	1.55	16.7 kG
Arc focusing cells	96	164	120	96 regular cells
Cell type	FODO	FODO	TME	TME
Vrf for 4 mm bunches	s 22	17	25	6* MV
nus for above	0.07	0.025	0.035	0.0024

*: 3.5 mm bunch length

•: parameters for 1 nmr cell, 0.5 nmr cell slightly different

Touschek Lifetime

17

SuperB Workshop Frascati, 16-Mar-06

Some Open Questions for Rings

- We need to make a parameter set (or sets)
 - actual energies, emittances, aspect & current ratio etc.
- Need to make lattices so the IR can be fit in
 - Could stay close to ILC designs, e.g. PPA
 - but need to adjust for size & energy
 - What is the effect of the IR on emittance??
 - e.g. PEP LER: .6 nmr just from the vertical bends!
- Get some idea if schemes like travelling focus actually work in practice.
 - Ultra-low β will require local chromaticity correction
 - Residual aberrations from travelling focus
 - beam aspect ratio of 200 may be tough