Beam Beam parameters optimization Mathematica to Guinea Pig inerface

M. Biagini, E. P., P. Raimondi

Super B factory meeting

Eugenio Paoloni (INFN)

Frascati Mar. 2006 1 / 19

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

Outline

Main strategy

Tools and interfaces

Round case with $N = 7 \cdot 10^{10}$ electrons per bunch

- Phase space sampling and optimization
- Scans around optimum point
- Stability

Scan around the best point found so far by hand

イロト イポト イヨト イヨト

Dramatis Personae (Main characters of the Drama)

Guinea Pig

- Author: Daniel Schulte
- Beam beam effects simulator
- Read from a card the accelerator specifications
- Write to an ascii file the spent bunches, luminosities, log informations

Mathematica[™]

- Author: Steve Wolfram
- General purposes environment
- Powerful mathematical algorithms

Lack of communication among them

Solution: write a set of scripts to

- preprocess the Guinea configuration files
- postprocess the Guinea output file

- -

Dramatis Personae (Main characters of the Drama)

Guinea Pig

- Author: Daniel Schulte
- Beam beam effects simulator
- Read from a card the accelerator specifications
- Write to an ascii file the spent bunches, luminosities, log informations

Mathematica[™]

- Author: Steve Wolfram
- General purposes environment
- Powerful mathematical algorithms

Lack of communication among them

Solution: write a set of scripts to

- preprocess the Guinea configuration files
- postprocess the Guinea output file

- -

Dramatis Personae (Main characters of the Drama)

Guinea Pig

- Author: Daniel Schulte
- Beam beam effects simulator
- Read from a card the accelerator specifications
- Write to an ascii file the spent bunches, luminosities, log informations

Mathematica[™]

- Author: Steve Wolfram
- General purposes environment
- Powerful mathematical algorithms

< 口 > < 同 > < 三 > < 三 >

Lack of communication among them

Solution: write a set of scripts to

- preprocess the Guinea configuration files
- postprocess the Guinea output file

-

Goal of the first exercise

Boundary conditions

- 10⁴ bunches
- damping time $\tau_{damp} = 10 \, ms$
- Round geometry
- Collision rate:

$$f = rac{1}{ au_{ ext{damp}} \log rac{\epsilon'}{\epsilon}}$$

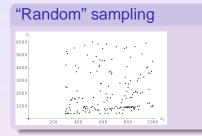
Goal

Maximize:

$$\mathcal{L} = f \cdot \mathcal{L}_{\text{single cross.}} \propto rac{\mathcal{L}_{\text{single cross.}}}{\log rac{\epsilon'}{\epsilon}}$$

or even better:

$$\int d\sqrt{s} \, \mathcal{L}(s) \cdot \sigma \left(\mathbf{e}^+ \mathbf{e}^- \to \Upsilon(\mathbf{4S}) \right)$$


Phase space

Constraints:

- 400 nm $< \sigma_{\rm x} < 6\,\mu{\rm m}~(\sigma_{\rm x} = \sigma_{\rm y})$
- .4 mm < β_x < 7mm ($\beta_x = \beta_y$)
- 300 $\mu m < \sigma_z < 1 mm$
- Waist shift W in $[-2\sigma_z, 2\sigma_z]$
- Traveling focus correlation ϑ in [-1.5, 1.5]
- Blow up:

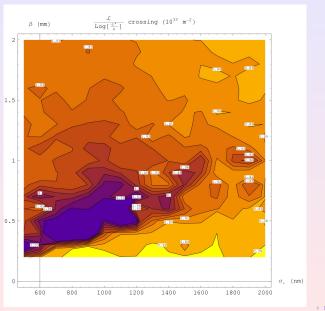
$$\mathcal{B} = \max \log \frac{\epsilon'_i}{\epsilon_i} < 100\%$$

Sampling and optimization

Floated parameters

•
$$\sigma_{\mathbf{X}} = \sigma_{\mathbf{Y}}$$

•
$$\beta_{\mathbf{X}} = \beta_{\mathbf{Y}}$$

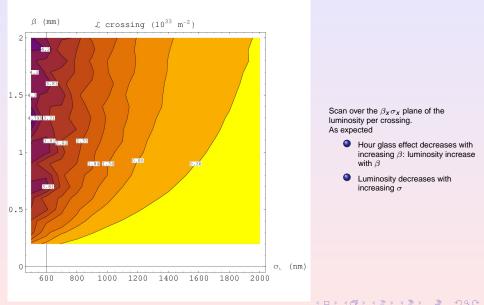

σz

• Waist shift and traveling focus correlations

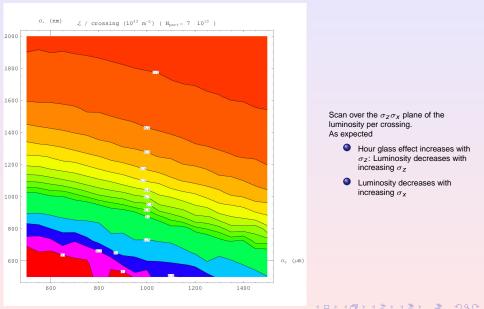
Optimum

C	Optimum !! $\sigma_{\perp} = 915.699 \text{ nm}$ $\beta = 0.55203 \text{ nm}$ $\sigma_{\pi} = 800.54 \mu m$ N = 7 10 ¹⁰ part. w = -0.49707 (mm) $\theta = -0.588194$ N = 1.37395 10 ⁻⁴ Y(4S) / cross. $\mathcal{L} = 1.14347 \times 10^{33} \text{ m}^{-2}$ / cross. $h_{\mathcal{L}} = 2.45892$ $\log[\epsilon'/\epsilon] = 0.0974953$
	\mathcal{L} / Log[ϵ'/ϵ] = 1.17285×10 ³⁴ m ⁻² / cross.

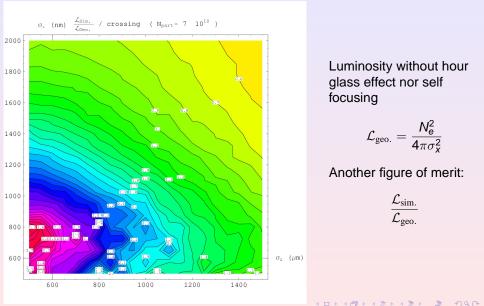
Scans around optimum point: \mathcal{L}/\mathcal{B}

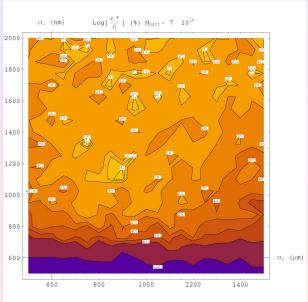

Scan over the $\beta_X \sigma_X$ plane of the figure of merit:

$$\frac{\mathcal{L}}{\log \frac{\epsilon'}{\epsilon}}$$

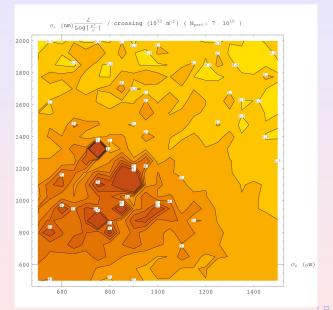

The optimum seats in the blue lake

A (1) > (1) > (1) > (1)


Scans around optimum point: \mathcal{L}

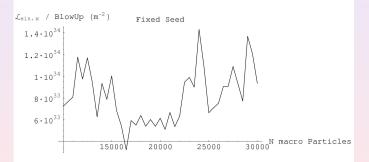

Scans around optimum point: \mathcal{L}

Scans around optimum point: $\mathcal{L}/\mathcal{L}_{geo.}$


Scans around optimum point: $\mathcal{B} = \log \epsilon' / \epsilon$

$$\mathcal{B} = \max \log rac{\epsilon'}{\epsilon}$$

is directly proportional to the time spent by the bunch in the damping ring.


Scans around optimum point: $Q = \mathcal{L}/\mathcal{B}$

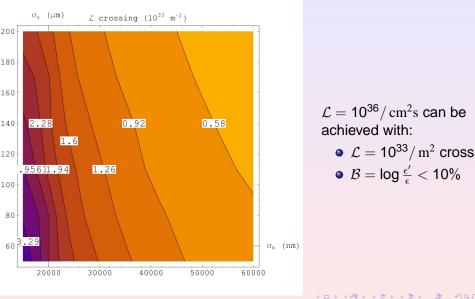
Simulation accuracy and stability

Unphysical parameters in the simulation:

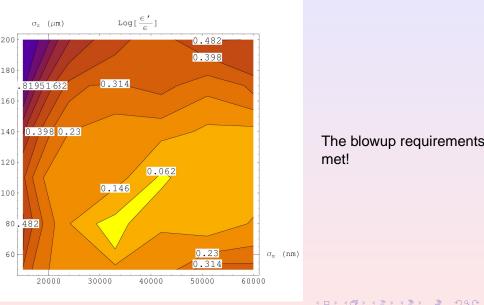
- Number of macro particles in the bunch: N = 10000
- Real Physics = $\lim_{N\to\infty}$ simulation

Extrapolation plagued by instabilities...

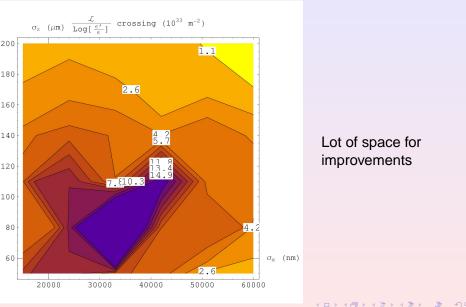
Conclusions for the round case


- Useful tools at hand to find the best point in multi dimensional parameters space
- Optimum point affected by instabilities
- How to distinguish real Physical instabilities from artefacted Simulated instabilities?
- Never the less Mathematica found a promising land in the parameters phase space

Flat case


Work started just yesterday afternoon... Working hypothesis

- $\sigma_y = 12.6 \, \text{nm}$
- $\sigma_{x} = 30,000 \,\mathrm{nm} = 30 \,\mu\mathrm{m}$
- $\beta_x = 2.5 \,\mathrm{mm}$
- $\beta_y = 0.08 \, \text{mm} = 80 \, \mu \text{m}$
- $N_e = 7 \cdot 10^{10}$
- Blow up $\sim 7\%$
- Collision rate $\sim 10^4 \text{bunches}/1\,\text{ms}$


Flat case: scan around the unoptimized best point

Flat case: scan around the unoptimized best point

Flat case: scan around the unoptimized best point

Beginnings...

Preliminaries for the Crab waist

- The Mathematica ↔ Guinea Pig interface design is able to handle the flat case also
- Work just started: stay tuned

Preliminaries for the Crab waist

- Is Guinea Pig (Strong Strong) the right tools?
- Strong-Weak (faster) simulation more useful?
- Just started thinking about it

イロト イポト イラト イラト 一手