On the Super-B Physics Potential: the "other" physics cases

Marco Ciuchini

INFN Roma III

- 1 The golden goal: Bd & Bs physics + τ LFV
- 2 The next-to-main goal: LFC τ physics
- 3 The last-but-not-least goal: charm physics $D-\overline{D}$ mixing + D CPV decays

thanks to: I. Bigi, P. Paradisi, M. Pierini, V. Porretti, L. Silvestrini and G. Gonzalez

From Super-B to Super-Flavour Factory

 $10^{10} \tau^{+} \tau^{-}$

10° DD

10¹⁰ BsBs

B_d and B_s physics program

CPV in Rare Decays

 e^+e^- Precision

Measurement	Goal	3/ab	10/ab	50/ab
$S(B^0 \to \phi K_S^0)$	≈ 5%	16%	8.7%	3.9%
$S(B^0 \to \eta' K_S^0)$	≈ 5%	5.7%	3%	1%
$S(B^0 \to K_S^0 \pi^0)$		8.2%	5%	4%
$S(B^0 \to K_S^0 \pi^0 \gamma)$	SM: ≈ 2%	11%	6%	4%
$A_{CP}(b \rightarrow s\gamma)$	SM: ≈ 0.5%	1.0%	0.5%	0.5%
$A_{\mathbb{CP}}(B \to K^* \gamma)$	SM: ≈ 0.5%	0.6%	0.3%	0.3%

J. Albert et al. physics/0512235

Rare Decays	e ⁺ e [−] Precision			
Measurement	Goal	3/ab	10/ab	50/ab
$ V_{td} / V_{ts} \sim \sqrt{\frac{\mathcal{B}(b \to d\gamma)}{\mathcal{B}(b \to s\gamma)}}$		19%	12%	5%
$\mathcal{B}(B \to D^* \tau \nu)$	$\mathcal{B} = 8 \times 10^{-3}$	10%	5.6%	2.5%
$\mathcal{B}(B \to s v \overline{v})$	1 exclusive:	$\sim 1\sigma$	> 2\sigma	> 4 <i>\sigma</i>
$(K^{-,0}, K^{*-,0})$	$\sim 4 \times 10^{-6}$	(per mode)	(per mode)	(per mode)
$\mathcal{B}(B_d \to \text{invisible})$		$< 2 \times 10^{-6}$	$< 1 \times 10^{-6}$	$< 4 \times 10^{-7}$
$\mathcal{B}(B_d \to \mu\mu)$	$\sim 8 \times 10^{-11}$	$< 3 \times 10^{-8}$	$< 1.6 \times 10^{-8}$	$< 7 \times 10^{-9}$
$\mathcal{B}(B_d \to \tau \tau)$	$\sim 1 \times 10^{-8}$	$< 10^{-3}$	$O(10^{-4})$?

Lepton Flavour Violation: $\tau \rightarrow \mu/e \gamma$

Unmistakable signal of new physics

Negative results still powerful in constraining GUT scenarios

Interesting interplay between quark and lepton FV

All the LFV τ decay modes are interesting and can be exploited to identify the source of NP contribution

For instance, in supersymmetry gaugino-mediated LFV predicts

BR(
$$\tau \to l_j l_k l_k$$
)/BR($\tau \to l_j \gamma$) ~ $\alpha_e/3\pi (log(m_{\tau}^2/m_k^2) - 3)$

Higgs-mediated LFV does not exhibit this correlation

P. Paradisi, hep-ph/0508054

Other topics in τ physics

 τ properties: mass, lifetime (CPT ~ 10^{-4} - 10^{-5})

Universality of lepton (charged) currents

$$\tau_{\tau} = \tau_{\mu} \left(\frac{g_{\mu}}{g_{\tau}}\right)^{2} \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \mathcal{B}(\tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau}) \frac{f(m_{e}^{2}/m_{\mu}^{2})r_{RC}^{\mu}}{f(m_{e}^{2}/m_{\tau}^{2})r_{RC}^{\tau}}
\tau_{\tau} = \tau_{\mu} \left(\frac{g_{e}}{g_{\tau}}\right)^{2} \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \mathcal{B}(\tau^{-} \to \mu^{-}\bar{\nu}_{\mu}\nu_{\tau}) \frac{f(m_{e}^{2}/m_{\mu}^{2})r_{RC}^{\mu}}{f(m_{\mu}^{2}/m_{\tau}^{2})r_{RC}^{\tau}}$$

$$\frac{g_{\mu}}{g_{\tau}}$$
, $\frac{g_{e}}{g_{\tau}}$, $\frac{g_{\mu}}{g_{e}}$ with an error ~ 10⁻⁴

Universality violation in SUSY are induced by

- tree-level charged Higgs exchange

- neutralino/chargino-slepton loop

High precision measurements might constrain SUSY parameters: quantitative study under way

P. Paradisi

CPV in τ decays: T-odd moments

(1)
$$\tau^- \rightarrow \nu \ \text{K}^-\pi^0 \ / \ \text{K}^0\pi^-$$
 : $\langle \mathbf{s}_\tau . \ (\mathbf{p}_K \times \mathbf{p}_\pi) \rangle$ Bigi, Sanda

(2)
$$e^{+}(\vec{p})e^{-}(-\vec{p}) \to \tau^{+}(\vec{k}, \vec{S}_{+})\tau^{-}(-\vec{k}, \vec{S}_{-}) \to \overline{B}(\vec{q}_{\bar{B}})\nu_{\tau} + A(\vec{q}_{A})\nu_{\tau}$$

$$\mathbf{O}_{1} = \frac{1}{2} \left[\hat{p} \cdot \left(\overrightarrow{q}_{\overline{B}} \times \overrightarrow{q}_{A} \right) + \hat{p} \cdot \left(\overrightarrow{q}_{\overline{A}} \times \overrightarrow{q}_{B} \right) \right]$$

Ananthanarayan, Rindani

$$\operatorname{Re}(d_{\tau}) = \frac{1}{\operatorname{c}_{AB}^{1}} \frac{e}{\sqrt{s}} \left(\left\langle \mathbf{0}_{1}(P) \right\rangle - \left\langle \mathbf{0}_{1}(-P) \right\rangle \right)$$
 Error on τ EDM $\sim 5 \times 10^{-21} \, \mathrm{e} \, \mathrm{cm}$ $\left(\operatorname{d}_{e} < 1.6 \times 10^{-27} \, \mathrm{e} \, \mathrm{cm} \right)$

Sensitivity to new physics to be assessed

Charm Physics

Unique opportunity: D's are the only mesons available to study oscillations in the up-quark sector

Charm is not light nor heavy wrt the QCD scale

- large long-distance effects
- large strong phases
- very large theoretical uncertainty

GIM suppression of FCNC extremely efficient

Huge NP contributions still possible

D-D mixing

The predictions of the relevant mixing parameters $x_d = \Delta M/\Gamma \text{ and } y_d = \Delta \Gamma/2\Gamma$ span 2 orders of magnitude

Long-distance dominated $x_d^{SD} \sim 10^{-5}$

Case for NP based on x_d uncertain!! (I. Bigi)

D-D mixing in SUSY

Yet NP contributions can be so large that non-trivial bounds can be obtained anyway

For example: MSSM with non-diagonal squark mass matrices

x	$\sqrt{\left \operatorname{Re}\left(\delta_{12}^{u}\right)_{LL}^{2}\right }$	$\sqrt{\left \operatorname{Re}\left(\delta_{12}^{u}\right)_{LR}^{2}\right }$	$\sqrt{\left \operatorname{Re}\left(\delta_{12}^{u}\right)_{LL}\left(\delta_{12}^{u}\right)_{RR}\right }$
0.3	4.7×10^{-2}	6.3×10^{-2}	1.6×10^{-2}
1.0	1.0×10^{-1}	3.1×10^{-2}	1.7×10^{-2}
4.0	2.4×10^{-1}	$3.5 imes 10^{-2}$	2.5×10^{-2}

Gabbiani et al.

 $\Delta m_d < 1.32 \times 10^{-10} \text{ MeV}$

Rare D decays

Again one has to fight against long distance to disentangle NP effects

c -> u γ transitions
driven by LD
contributions

► D -> $V I^{\dagger}I^{\dagger}$ gets large $NP_{10^{-8}}I_{10^{$

Burdman et al.

CPV in D decays

Direct CPV

© I. Bigi

- © Cabibbo favour. (CF) modes: need New Physics (except *)
- (SCS)

possible with KM -- benchmark: $O(\lambda^4) \sim O(10^{-3})$

New Physics models: O(%) conceivable

- if observe direct $P \sim 1\%$ in SCS decays -- is it New Physics? must analyze host of channels
- © 2x Cabibbo supp. modes (DCS):need New Physics (except *)

CPV in t-dependent CPA ~ $sin(\Delta m_D^{\dagger})$ Im(q/p) ρ_f

SM:

 $CPA \sim 10^{-6}$

Conclusions (i)

B physics + τ LFV

τ physics (lepton cc univ. + CPV)

charm physics (mixing + rare + CPV)

Conclusions (ii)

Design considerations:

© I. Bigi

- hermeticity of detector & low backgrounds most helpful or even essential for beauty, τ & charm decays to control systematics; e.g., $B \rightarrow \tau\tau, \tau\nu, \tau\nu D, \tau\nu X/\tau \rightarrow \nu l\nu, \nu K\pi$
- the resolution of the microvertex detector should be driven by the presumably much more demanding requirements of charm physics, in particular concerning $D^0 \overline{D^0}$ oscillations and CP there. This should benefit also
 - $\bullet \bullet$ searches for $\not C \not P$ in τ decays
 - searches for $\not\subset P$ in B_s decays on Y(5S) driven by $\Delta \Gamma$
- $_{\mbox{\scriptsize o}}$ a polarized e- beam most helpful for CP studies in τ & Λ_c decays -- also to address systematics

Conclusions (iii)

No problem to establish the physics case Program complementary to the LHC helps understanding NP models Measurable NP virtual effects probes scales beyond the LHC reach O(10) interesting measurements

Phenomenological analyses not always match the foreseen accuracy: dedicated work is required