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Abstract

For a given rf frequency, the quasi-isochronous lattice allows, in principle,

to double the number of bunches compared with the nominal lattice. We

explore such a possibility considering the beam stability and luminosity of

the PEP-II B-factory.
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1 Introduction and motivation

• The luminosity L = 1034 cm−2s−1 has been achieved in the

PEP-II B-factory by filling each other RF bucket.

• Further increase of L by increasing Ibunch is limited mostly by the

beam-beam effect.

• For Vrf fixed, σ0 ∝ √
α. Then, L can be increased for small α,

L ∝ 1√
α

, provided βy ∝ σy ∝
√

α. (1)

• The phase plane for small α looks like the upper plot in Fig. 1.
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Figure 1: Phase plot for the Hamiltonian H(δ, ζ) = α0δ
2/2+α1δ

3/3−λ(sin[φ−
ζ] − sin[φ]) − λζ cos[φ]. Parameters are λ = 2.0E − 7, α1 = 5.5E − 2, and

α0 = 5.0E−2 (above), and α0 = 5.34E−4 (bottom). Note the different vertical

scale for two plots.
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• We notice that small α may alow doubling of the number of

bunches per rf wave length using the quasi-isochronous lattice.

There are many questions to be answered whether such approach

can be used to increase luminosity.

We considered some of them:

a) lattice design,

b) equilibrium bunch shape and rms

c) parasitic crossings

d) the rf stability

e) microwave and the longitudinal HT instabilities.

etc.

Some results can be of general interest and are reported below.
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2 Longitudinal dynamics with small α

• There are two stable fixed points (FP) in the phase space of the

longitudinal motion:

(1.) {ωrfz1

c
= 0, δ1 = 0}, (2.) {ωrfz2

c
= 2φs, δ2 = −α0

α1

}.

• It is possible to have two bunches within the rf wave length

centered at the 2FPs: trailing at (1) and leading at (2) FPs.

• The motion in the small vicinity of the FPs is stable (if

0 < φs < π/2) with the same Ωs ∝ √
α0,

• In the region with the Dx, the relative horizontal shift of the

centroids is
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∆x = −α0

α1

Dx. (2)

• The energy acceptance is defined by the α0/α1 requiring

α0

α1

>' 10 δ0. (3)

• For PEP-II, α1 ' 0.05, δ0 = 6.1E − 4, and the high repetition

rate of injection what relaxes requirements for the dynamic

aperture and the energy acceptance.

Acceptable α0 = 5.344E − 4 are only by a factor 5 smaller than

the nominal α0 = 2.4E − 3.
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3 Bunch profile

• We model the wake field of a point-like bunch for the LER

PEP-II B-factory adding contributions of the experimentally

measured modes of six RF cavities, resistive wall, and the

inductive components of the ring.

• The steady-state longitudinal bunch profiles ρ(z) for two

sub-bunches are given by the Haissinski solution.

• The wake enters with the opposite sign. Therefore, the dynamics

of the leading bunch is the same as the dynamics of a bunch in

the lattice with the negative momentum compaction factor.

• The potential well distortion (PWD) makes the first (leading)

bunch shorter and the second (trailing) bunch longer.
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Figure 2: Bunch lengthening vs bunch current for positive and negative momen-

tum compaction (MC) factors.
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3.1 Other effects

• The only new additional parasitic crossings are the interaction at

±3λ/4 = 45 cm inside of the B1 magnet.

• For equal beam currents there is no need to detune the cavities.

It can be shown (see the full text in the SLAC-PUB-11467,

September 7, 2005) that there is no beam-loading instability.

• The threshold bunch current to Microwave Instability ∝ 20 mA

for α0 > 0 is reduced to 5 mA for α0 < 0. However, even 5 mA

bunch current is by a factor two higher that the present PEP-II

bunch current and may be acceptable.
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Figure 3: Energy spread vs beam current for positive and negative momentum

compaction factors.
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4 Longitudinal head-tail instability

The growth rate of instability 1/τ ∝ (α1/α0) and is important for

small α0.
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Figure 4: Dynamics of the head-tail single-bunch instability is shown in the phase

plane (z, δ) for 2 mA bunch current. Time is indicated in the figure. At t > 600

turns, the bunch splits in halves. 12



We carried out two type of simulations.

**** In the simple simulations, we calculate trajectories of four

particles (i, j) = 1, 2, ..., 4, solving with MATHEMATICA

equations of motion

dζi

dτ
= −δi (1 + εδi),

dδi

dτ
= ζi −

∑

j

Ibunch

4
W [ζi − ζj ], (4)

where τ = ωst, and ε = (α1/α0)δ0. Trajectories with initial

conditions ζi = −0.33,−0.27, 0.27, 0.33, δi = 0, were calculated for

the time interval up to 700 synchrotron periods. That allows fast

study of the dynamics of the system including quantitative result

for the emittance variation.

**** More elaborate simulations used the Fokker-Plank solver

developed to study microwave instability.
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Results of the simple simulations for the bunch current

Ibunch = 0.5 mA are shown in Fig. 5. The system in clearly

unstable although the growth rate is small.

• The instability is caused by the variation of the energy loss during

the synchrotron period due to variation of the rms bunch length.

• Therefore, it seems that the instability might be stabilized by the

longitudinal feedback system (FB).

• We model the FB generating a buffer with positions of the bunch

centroid for the last 56 revolutions and interpolate data as

ζf (τk) = a0+a1 sin(ντk +φ1)+a2 sin(2ντk +φ2)+a3 sin(3ντk +φ3),

(5)

where τk = τ − (k − 1)T0, k = 1, ..., 56, and aj , j = 0, 1, 2, 3 and

φj , j = 1, 2, 3 are fitting parameters.
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The kick δi → δi + K is applied to each of four tracking particles

where K = 0.1 [dζf/dτ ]k=1.

The result of tracking in Fig. ( 6) seems encouraging: the

amplitude of the oscillations for each particle remain stable for

700 synchrotron periods.

• Unfortunately, the simulations with the Fokker-Plank solver do

not confirm this conclusion, see Fig. ( 7) and Fig. ( 8).

Although the results in many respect seems similar to the

four-particle model, there is a systematic growth of emittance.

The difference of two simulations is apparently due to the

difference in the models: the two-particle model does not include

fluctuations which are included in the Fokker-Plank equation.
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Figure 5: Tracking of four particles with the feedback off, Ibunch = 0.5 mA. The

trajectories are unstable.
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Figure 6: Tracking of four particles with the feedback on. The i-th row shows

the trajectory in the phase plane (on the left) and time variation ζi(τ) (on the

right) for the i = 1, 2, 3, 4 particle. The trajectory after one or two turns finds

the fix point and then remains stable for 700 synchrotron periods.
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Figure 7: Variation of the centroid offset and the centroid energy in time with

zero wake. Results are from the solution of the Fokker-Plank equation with the

feedback on.
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Figure 8: Variation of the bunch length, the energy spread, and emittance in

time. Results are from the solution of the Fokker-Plank equation with the feed-

back on. The fast growth starts with the bunch deformation (see insert) which

is later would followed by splitting of thge bunch in halves as shown in Fig. (4).
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5 Summary

The quasi-isochronous ring with the reduced momentum

compaction factor allows to have two stable bunches per rf bucket.

It is tempting to increase the number of bunches per ring without

increasing the rf frequency. The paper presents a preliminary

study of this possibility. We consider the lattice design, the bunch

lengthening and distortion, parasitic crossings, the rf beam

stability, and microwave instability. The longitudinal head-tail

instability makes the beam unstable and the feeback system can

not stabilize it although the growth rate of instability is small.

Therefore, the statement that there are two stable fix points in

the low alpha lattices is an illusion: the fluctuations make the

particles in the second fixed point unstable.
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Figure 9: Twiss parameters for the quasi-isochronous lattice with α0 =
5.3E − 4. The same lattice can be used to make the lattice isochronous
and α < 0 by varying a single quad strength.

20-1



-10 -8 -6 -4 -2 0 2 4
z�Σ

-20

-10

0

10

20

30

W
,HV�pC

L

Figure 10: Wake field obtained by convolution of the Wδ(z) with the
σ = 8 mm Gaussian distribution.
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Figure 11: An example of the bunch profiles for the leading (the bunch
centered at the 2nd FP, blue line) and trailing bunch(centered at the 1st
FP, red line). Parameter α0 = 0.8 10 − 3. The zero current σ0 = 1 cm,
the bunch current IB = 2.5 mA.
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