

Single-Particle Dynamics for X-ray Compression Using Crab Cavities

Michael Borland
Operations Analysis Group
APS Operations Division
November 7, 2005

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Outline

- Review of Zholents' concept
- Basic analysis of compression
- Simulation code and methods
- Lattice options and constraints
- Choice of voltage and frequency
- Emittance degradation mechanisms
- Error sensitivities
- Photon beam properties
- Optimization of compression
- Pulsed option

Zholents' Transverse Rf Chirp Concept

(Adapted from A. Zholents' August 30, 2004 presentation at APS Strategic Planning Meeting.)

Compression Analysis

• Assuming everything is linear and gaussian, the minimum achievable pulse length for a long beamline is

Normal APS bunch is 40 ps rms

Simulation Code and Methods

- We used **elegant**¹ for all simulations
- Modeled lattice with
 - First-order bending magnets (ρ =38m)
 - Canonically-integrated quadrupoles and sextupoles
- Modeled deflecting cavity with RFTM110 element
 - Zero-length TM110 cavity
 - 6th order radial expansion of electric and magnetic fields
- When included, synchrotron radiation modeled with a lumped element (SREFFECTS)
 - Gives correct damping rates and equilibrium properties

¹M. Borland, APS LS-287, Sept. 2000.

Simulation and Bunch Lengthening

- APS has significant (~2x) bunch lengthening due to potential well distortion¹
- This can be modeled using **elegant** and an impedance model²
- This is extremely CPU-intensive, so we used another technique
 - Reduce the simulated rf voltage to lengthen the bunch
- Single particle longitudinal dynamics is about right

¹Y.C. Chae, PAC 2001, 1491 (2001)

²Y.C. Chae, PAC 2003, 3017 (2003)

Lattice Options

1 sector spacing

2 ID + 1 BM

2 sector spacing

4 ID + 2 BM

Beta function increase required to get the right phase advance

Helps compression by making divergence smaller

After V. Sajaev

Rf Curvature and Frequency Choice

- Can get the same compression as long as h*V is constant
- Higher V and lower h: more linear, less need for slits
- Higher h and lower V: smaller maximum deflection and less lifetime impact
- Higher h and maximum V: shortest pulse, acceptable lifetime
- h=8 (2800 MHz) limit from power source availability¹
- V=6 MV limit from lifetime

¹D. Horan

Causes of Emittance Degradation

- Less than total kick cancellation will cause emittance increase
- Effects present in a perfect machine
 - Momentum compaction and beam energy spread
 - Sextupole effects
 - Chromaticity and beam energy spread
- Additional effects in an imperfect machine
 - Lattice errors
 - Lattice coupling between cavities
 - Roll of cavities about beam axis
 - Rf phasing and voltage errors

Momentum Compaction

- Momentum compaction: the variation in time-of-flight with energy error
- Beam has 0.1% rms energy spread
 - Leads to 51 fs rms time-of-flight spread
 - Equivalent to 0.05 deg rf phase spread for h=8
 - For 6 MV, that means 0.8 μrad added divergence
 - Normal beam divergence is 2.2 urad
 - Adding in quadrature gives 6% emittance growth in a single pass
- Errors are proportional to momentum offset, "should" cancel over one synchrotron oscillation period

Sextupole Effects

- Sextupoles are necessary
 - Correct chromatic focusing aberrations
 - Defeat beam instabilities

- Phase advance varies with amplitude
 - Kick cancellation varies with amplitude
 - Vertical emittance increases

- Large vertical motion from cavities gets coupled into horizontal
- Leads to large horizontal emittance growth
- Plausible solution: turn off sextupoles between cavities

$$B_{y} = \frac{1}{2}m(x^{2} - y^{2})$$

$$B_{y} = mxy$$

Interior Sextupoles and Horizontal Emittance

As expected, sextupoles-off is better

Radiation damping helps sextupole-on case

Interior Sextupoles and Vertical Emittance

Damping helps sextupoles-on case

QE hurts sextupoles-off case via uncorrected local chromaticity

Chromaticity

- Chromaticity: variation in phase advance with energy error
- With interior sextupoles off, very large variation between the cavities
- Beam has 0.1% rms energy spread
 - Results in 0.0022 rms tune spread for propagation between cavities (tune=phase/360 deg)
 - Results in beamsize spread at the second cavity
 - 41 μ m for V=6 MV, h=8
 - Nominal beamsize is 11 μ m
 - Vertical emittance increases 3.7-fold in a single pass
- Errors are proportional to momentum offset, "should" cancel over one synchrotron oscillation period

Effect of Quantum Excitation

Optimizing Sextupoles

- Neither standard sextupole settings nor "sextupoles off" case is really acceptable
- Can try to minimize single-pass emittance growth
 - Allow **elegant** to vary the interior sextupoles
 - APS has individual supplies for each sextupole
- Important factors in making this work (V. Sajaev)
 - Use lattice with lower vertical beta functions
 - Zero chromaticity between cavities
 - Don't let sextupoles change too much
- If these are not respected, the dynamic aperture is tiny
- Sajaev's solution is used in all subsequent simulations

Optimized Sextupoles

 Opens possibility to increase the number of sectors that could benefit from the compression scheme

Number of sectors	Vertical emittance
2	70 pm
3	59 pm
4	41 pm

- Maximum number of sectors probably limited by dynamic aperture reduction
- See V. Sajaev's talk later today.

Content courtesy V. Sajaev, APS.

Error Sensitivities

- So far, all calculations assumed a perfect machine
- Sensitivities have been estimated for several types of *static* error
- Assumed 6 MV and h=8
- Simulations include QE effects and damping
 - In simulations, effects are turned on instantaneously and so produce a transient
 - Damping reduces emittance degradation
 - This implies that dynamic errors will have stronger effects

Lattice Errors

- Lattice errors can result in
 - Phase advance errors
 - Beta function errors
- Sources include
 - Beamline steering
 - Power supply drift
 - Misalignments
- Lattice correction gives
 - 1% beta function errors¹
 - <0.001 tune error²

¹V. Sajaev and L. Emery, EPAC 2002, p. 742 ²L. Emery

Lattice Coupling Between Cavities

- May have quad and sextupole roll
- Roll is ~0.25 mrad rms¹
- Performed random roll simulations with 20 seeds
- No coupling correction was employed

¹H. Friedsam

Cavity Roll

- Cavities may be rolled relative to machine vertical
- Simulated two cases
 - Cavities rolled the same amount (CM)
 - 2nd cavity only rolled (C2)
- Neither is a problem at few mrad level

Intercavity Voltage Error

- Imparted errors to one of the cavities
- LCLS *pulsed* S-band system requires <0.1% rms voltage jitter¹

¹LCLS Design Study Report, SLAC R-521 (1998).

Intercavity Phase Error

- Looked at common- and differential-mode errors
- Emittance growth not an issue, but orbit disturbance is
- SLAC *pulsed* S-band systems have <0.1 deg rms phase jitter¹

¹R. Akre et al., SLAC PUB 9421.

Preliminary Optics Concept for 10 keV

Symmetric-cut Si(400) About 30% of photons that get crystal through slits get through the compression optics. focus 45m Slits and vertical downstream focusing mirror Head radiation $\Delta t = K * \Delta y$ Tail Undulator Asymmetric-cut Si(400) radiation crystal 30m

After S. Shastri, APS

N.B.: Sketch not to scale. Angles are exaggerated.

Undulator Radiation Pattern

Central cone opening angle ~5 urad rms

For estimates, use

$$\sigma_{\theta} = \sqrt{\frac{\lambda}{2L}}$$

Simulations use distribution function¹

$$S(\theta) \approx sinc^2 \left(\frac{n N \pi \gamma^2 \theta^2}{1 + K^2} \right)$$

¹K.J. Kim, AIP 565 (1989)

Slicing Results for 10 keV, UA

Compression Simulation

- Generate one photon for each electron by adding samples from the distribution function
- Use **elegant** to optimize compression through system consisting of
 - Drift (30 m)
 - Vertical slits
 - "Compression matrix" (unit matrix except for variable R_{53})
 - Vary R₅₃ to minimize time-spread of central 70% of photons
- Repeat optimization for various slit spacings

Compression Results for 10 keV, UA¹

¹3.3cm period, 2.4m length

Compression Results for 10 keV, UA

Compression Results for 10 keV, UA

Is a Pulsed System Better¹?

- Most pump-probe experiments use ~1kHz lasers, don't use continuous beam
- Many experiments run from very short to very long time scales
 - Having a chirped pulse just throws away intensity when looking at long time scales
- A pulsed chirping system lets the user choose between chirped and unchirped radiation

Pulsed System Considerations

- Could charge and discharge cavities at 100~1000 Hz
 - Must be a room temperature system
- Advantages over superconducting
 - Shorter development time
 - Significantly cheaper
 - Less emittance growth
- Pulse could be of order the revolution time (3.68 μ s)
 - Power load should be manageable
 - 6 MV should be no problem
 - Emittance effects greatly reduced

Comparison of Emittance Blowup

A Low-Cost Proof-of-Concept

- If we operate near the vertical integer resonance, we can build up a large global chirp using one cavity
- More practically¹, set vertical tune to $n+\frac{1}{4}$ and the chirp cavity frequency to $0.25*f_{rev}$ from the harmonic.
- 25~100 kW of rf power and a 1-m structure give ~2 ps FWHM pulses.
- Limited to about 15 Hz by need to damp blown-up vertical emittance.
- Allows development and testing of optics and experiments

y'-t Phase Space Evolution

Compression Results

Summary

- Zholents' scheme as applied to APS has been studied extensively
- Picosecond x-ray pulses appear feasible with 50~70% transmission through slits
- Tolerances mostly manageable
 - Rf phase tolerance will be the hardest
 - Didn't simulate dynamic errors
- Need to revisit impedance issues
- Need to look at stability of the delivered pulses
- Case for a pulsed system is plausible
- A "budget-minded" proof-of-concept is possible

