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Coulomb	
  drag	
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  double-­layer	
  graphene 3

FIG. 3: (color online) Coulomb drag in graphene bilayers.
(a) Layer resistivity (ρ) and ρDrag vs. layer densities for sam-
ple 2, measured by sweeping VBG at T=250 K. The charge
neutrality points of both layers are captured in the experi-
mentally accessible VBG window, allowing the bilayer to probe
three different regimes: hole-hole, electron-hole, and electron-
electron. (b) ρDrag vs. VBG measured at different T values,
from 250 K to 77 K (solid lines). Inset: maximum ρDrag

measured in the electron-hole and electron-electron regimes
vs. T 2. The VBG axis of panel (b) applies to both panels.

(n0T , n0B) at the charge neutrality point . The data of
Figs. 2(a) and 2(b) show a good agreement between the
measured layer resistivities and densities (symbols), and
the calculations (solid lines). The layer mobilities, deter-
mined from Hall measurements, are µB=5,400 cm2/Vs,
and µT=4,500 cm2/Vs at T=4.2K.
Key insight into the physics of the graphene bi-

layer system, as well as the ground state of mono-layer
graphene can be gained from a Coulomb drag measure-
ment [12, 13]. A current (IDrive) flown in one (drive)
layer leads to a momentum transfer between the two lay-
ers, thanks to the inter-layer electron-electron interac-
tion. To counter this momentum transfer, a longitudinal
voltage (VDrag) builds up in the opposite (drag) layer.
The polarity of VDrag depends on the carrier type in the
two layers, and is opposite (same) polarity as the voltage
drop in the drive layer when the both layers have the

same (opposite) type of carriers. The drag resistivity is
defined as ρDrag = (W/L)VDrag/IDrive, where L and W
are the length and width of the region where drag oc-
curs. An example of measured ρDrag vs. VBG at T=250
K in sample 2 is shown in Fig. 3(a), along with the top
and bottom layer resistivities, ρT and ρB. Unlike sample
1 data (Fig. 2), the charge neutrality (Dirac) points of
both layers can be captured in the experimentally acces-
sible VBG window. Consequently, depending on the VBG

value, sample 2 can probe three different regimes: a hole-

hole bilayer, for VBG < -15 V, an electron-hole bilayer for
-15 V < VBG < -2 V, and an electron-electron bilayer
for VBG > -2 V. The dependence of ρB and ρT on VBG

of Fig. 3 is also in good agreement with the model pre-
sented in Fig. 2. Consistent with the above argument,
ρDrag is positive in the electron-hole bilayer regime, neg-
ative in the hole-hole or electron-electron regime, and
changes sign when either the top or the bottom layer are
at the charge neutrality point. The standard consistency
checks [13] have been performed to ensure the measured
drag voltage is not affected by inter-layer leakage current.

For two closely spaced two-dimensional systems, when
the ground state of each layer is assumed to be a Fermi
liquid, and the inter-layer interaction is a treated as a per-
turbation, the ρDrag depends on layer density (n) as ∝

1/n3/2, on temperature as ∝ T 2, and inter-layer distance
(d) as∝ 1/d4 [13]. Likewise, the Coulomb drag resistivity
in graphene, calculated in the Fermi liquid regime using
Boltzmann transport formalism and the random phase
approximation for the interaction dynamic screening is

[14]: ρDrag = − h
e6

ζ(3)
32

(kBT )2

d4

ε2

n3/2
B n3/2

T

(3); kB is the Boltz-

mann constant, ζ(3) ∼= 1.2, ε and is the dielectric permit-
tivity. A separate effect which has been theoretically ad-
vanced as the representative Coulomb drag mechanism in
graphene is trigonal warping [15]. Figure 3(b) data shows
ρDrag vs. VBG measured for sample 2 for T values be-
tween 77 K and 250 K. Away from the charge neutrality
point of the bottom layer, the ρDrag magnitude increases

with reducing nB following a ∝ 1/n3/2
B dependence, con-

sistent with the expected behaviour in the Fermi liquid
regime [14]. We note however that the magnitude of
ρDrag is a factor of ∼ 102 lower than the values expected
according to Eq. (3). The ρDrag ∝ (kBT )2 dependence,
which stems from the allowed phase space where electron-
electron scattering occurs, is followed closely for temper-
atures higher than 70 K (Fig. 3(b) inset). Figure 3 data
shows a smooth crossover for ρDrag through 0 Ω, from the
electron-hole to the electron-electron regime [blue corri-
dor of Fig. 3(b)]. The crossover can be explained by the
co-existence of electron and hole puddles near the charge
neutrality point of the bottom layer, which generate drag
electric fields of opposite sign, and cancel the ρDrag.

A remarkable transition in the drag resistance is ob-
served for T lower than 50 K (Fig. 4). As T is reduced,
the ρDrag data starts to develop fluctuations superposed

2

FIG. 1: (color online) Optical micrographs (top) and schematic representation (bottom) outlining the fabrication process of
an independently contacted graphene bilayer. (a) Hall bar device fabrication on the bottom graphene layer, followed by the
Al2O3 inter-layer dielectric deposition. (c) Top graphene layer isolation on a separate substrate, followed by transfer onto the
bottom layer using a PMMA membrane spin-on and NaOH etching. (c) Top graphene layer Hall bar realization, using graphene
etching, lithography, metal deposition, and lift-off. The yellow and red dashed contours in the optical micrograph represent
the top and bottom layers, respectively. The scale bar in all panels is 10 µm.

FIG. 2: (color online) (a) Top and bottom layer four-point resistivity vs. VBG, measured at T=4.2 K in sample 1. (b) Layer
densities vs. VBG at T=4.2 K. Depending on the applied VBG, both electrons and holes can be induced in the bottom layer;
the top layer contains electrons in the available VBG window, owing in part to unintentional n-type doping. The symbols in
panels (a) and (b) represent experimental data, while solid lines represent the calculated VBG dependences according to Eqs.
(1) and (2). (c) Schematic representation of the band diagrams across the graphene bilayer heterostructure at VBG=0 V. For
simplicity both layers are assumed to be at the charge neutrality point, and aligned with the back-gate Fermi level. The layer
thickness is exaggerated to show the energy wave-vector Dirac cones. (d) Band diagram in the same heterostructure under
an applied positive VBG. The two layers are assumed to be grounded, hence their respective Fermi levels remain at 0 V. In
addition to the voltage drop (VSiO2

) across the SiO2 bottom dielectric, an electric field is created across the inter-layer Al2O3

dielectric, resulting in finite electron densities being induced in both layers; VAl2O3
is the voltage drop across the Al2O3 layer.

top (nT ) and bottom (nB) layers [Fig. 2(d)]. The dif-
ference between the gate and bottom layer Fermi lev-
els is distributed partly across the SiO2 dielectric, and
partly on the Fermi energy of the bottom graphene layer:
eVBG = e2(nB + nT )/CSiO2

+ EF (nB) (1); EF (n) =
h̄vF

√
πn is the graphene Fermi energy measured with

respect to the charge neutrality point at a carrier density
n, e represents the electron charge, vF=1.1×106 m/s is
the graphene Fermi velocity, and CSiO2

denotes the SiO2

dielectric capacitance per unit area. Similarly, the Fermi
energy difference between the two layers is responsible
for the potential drop across the Al2O3 inter-layer di-

electric: EF (nB) = e2nT /CAl2O3
+ EF (nT ) (2); CAl2O3

is the Al2O3 dielectric capacitance per unit area. The
finite Fermi energy of the bottom layer, EF (nB) in Eq.
(2), plays the same role with respect to the top layer, as
the applied VBG in Eq. (1) for the bottom layer. Equa-
tions (1) and (2) allow us to determine nB and nT as
a function of VBG. This model can be adjusted to in-
clude finite layer densities at VBG=0 V. The layer re-
sistivity dependence on VBG can be understood using a
Drude model ρT,B = (n∗

T,BeµT,B)−1, where µT , and µB

are the top and bottom layer mobilities, and the layer
densities are adjusted to allow for finite carrier densities

This	
  slide	
  contains	
  experimental	
  data	
  from	
  the	
  UT	
  Austin	
  
group	
  [S.	
  Kim	
  et	
  al.,	
  Phys.	
  Rev.	
  B	
  83,	
  161401(R)	
  (2011)]

but	
  there	
  are	
  also	
  (yet	
  unpublished,	
  I	
  believe)	
  data	
  from	
  the	
  
Manchester	
  and	
  the	
  Columbia	
  groups

See	
  e.g.	
  M.I.	
  Katsnelson,	
  Phys.	
  Rev.	
  B	
  84,	
  041407(R)	
  (2011)	
  
and	
  other	
  recent	
  articles	
  by	
  Peres,	
  Castro	
  Neto,	
  Das	
  Sarma,	
  etc

ρD ∝ n−3d−4

ρD ∝ n−1| ln(nd2)|

Thick	
  limit	
  (i.e.	
  weak	
  coupling)

Thin	
  limit	
  (i.e.	
  strong	
  coupling)
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Force	
  between	
  particles	
  (electrons,	
  atoms,	
  etc)	
  with	
  antiparallel	
  (pseudo)spin

Leading	
  term	
  in	
  the	
  spin	
  drag	
  relaxation	
  rate	
  starts	
  at	
  second	
  order

Fσσ̄ = −m
nσ̄

n

vσ − vσ̄

τsd

dP↑
dt

= − 1
τsd
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Rate	
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  spin-­‐up	
  momentum

1
τsd

∝ n

n↑n↓kBT

�
dDq
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q2

D
v2

q

� +∞

0

dω

π

�mχ(0)
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order of one second, which is an extremely long time compared to the
trapping period (44ms). The underlying explanation for spin current
reversal and the slow relaxation can be found in the extremely short
mean free path and the high collision rate between opposite-spin
atoms at unitarity. According to the above estimate, the spin diffusivity
is approximately B/m, which for 6Li is (100mm)2 s21. The atom clouds
in the experiment have a length of the order of 100mm, and it takes
them of the order of a second to diffuse through each other. So we are
indeed observing quantum-limited spin diffusion. The initial bounces
will occur when themean free path of a spin-up atom in the spin-down
cloud is smaller than the spin-down cloud size, that is, when the
mixture is hydrodynamic. Instead of quickly diffusing into the spin-
down region, it is then more likely that the spin-up atom is scattered
back into the spin-up region, where it can propagate ballistically.
After long evolution times, the oscillations shown in Fig. 1 have been

damped out, and the displacement between the centres of mass is
much smaller than the widths of the clouds. The relaxation dynamics
can then be described by linear response theory, giving access to the
spin transport coefficients. The spin drag coefficient Csd is defined as
the rate of momentum transfer between opposite-spin atoms12,14, and
is therefore related to the collision rate. From the Boltzmann transport
equation, the relaxation of the displacement d near equilibrium follows
the differential equation22

C sd
_dzv2

zd~0

in the case of strongly overdamped motion realized here. Fitting an
exponential with decay time t to the displacement gives the spin drag
coefficient of the trapped systemasC sd~v2

zt. In thedeeply degenerate
regime, the relationship between the measured and the microscopic
spin drag coefficient might be affected by a weak enhancement of the
effective mass23 and the attractive interaction energy between the
clouds10,22,24.
The spindrag coefficient is found tobegreatest on resonance, and thus

spin conduction is slowest on resonance (see Supplementary Informa-
tion). On resonance, Csd in a homogeneous system must be given by a
function of the reduced temperature T/TF times the Fermi rate EF/B. At
high temperatures, we expect the spin drag coefficient to obey a universal
scaling C sd!nsv! EF

B T=TFð Þ{1=2. In Fig. 2 we show the spin drag
coefficient as a function of T/TF; Csd is normalized by EF/B, where EF
and TF are the local values at the centre of total mass. We observe T21/2

scaling for T/TF. 2, finding C sd~0:16 1ð Þ EFB T=TFð Þ{1=2. At lower
temperatures, we observe a crossover from classical to non-classical
behaviour as the spin drag coefficient reaches a maximum of approxi-
mately 0.1EF/B near the Fermi temperature.We interpret this saturation
of the spin drag coefficient as a consequence of Fermi statistics and
unitarity4,5, as s and v approach values determined by the Fermi wave-
vector kF. The spin drag coefficient is inversely proportional to the spin
conductivity, which describes the spin current response to an external
spin-dependent force. Near the Fermi temperature, the maximum spin
drag coefficient corresponds to a minimum spin conductivity of the
order of kF/B. This is the slowest spin conduction possible in three
dimensions in the absence of localization.
At low temperatures, the spin drag coefficient decreases with

decreasing temperature. Reduced spin drag at low temperatures is
expected in Fermi liquids owing to Pauli blocking11,18,22,24,25, and is also
expected in one-dimensional Fermi gases26. In the case of collective
density (rather than spin) excitations, it was shown that pairing cor-
relations enhance the effective collision rate dramatically as the tem-
perature is lowered6. The effect of pairing on the spin drag coefficient
maybe qualitatively different. In a simple picture, spin currents require
the flow of unpaired atoms, whereas collective density excitations
affect paired and unpaired atoms alike.
Comparing the relaxation rate to the gradient in spin density allows

us to also measure the spin diffusivityDs. At the centre of the trap, the
spin current density Js is given by the spin diffusion equation27
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Figure 1 | Observation of spin current reversal in a resonant collision
between two oppositely spin-polarized clouds of fermions. a, b, Total
column density (a) and the difference in column densities (b: red, spin up; blue,
spin down) during the first 20ms after the collision. The central column
densities here are typically 73 109 cm22. Strong repulsion is observed that
leads to a high-density interface. c, The centre of mass separation initially
oscillates at 1.63(2) times the axial trap frequency of 22.8Hz (see
Supplementary Information) before decaying exponentially at later times. The
initial atom number per spin state is 1.23 106, and the temperature 200ms
after the collision and later is 0.5TF, withTF the Fermi temperature at the centre
of each cloud.d, The trapping potentialV is harmonic along the symmetry axis.
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Figure 2 | Spin drag coefficient of a trapped Fermi gas with resonant
interactions. The spin drag coefficientCsd is normalized by the Fermi rateEF/B
at the trap centre, whereas the temperature is normalized by TF5EF/kB. We
find agreement between measurements taken at three different axial trapping
frequencies, 22.8Hz (red circles), 37.5Hz (blue triangles) and 11.2Hz (black
squares). The data for T/TF. 2 fit to a T21/2 law (solid line). Dashed line, a
power law fit for T/TF, 0.5 to show the trend. Each point is a mean from
typically three determinations ofCsd, each obtained from a time series of about
30 experimental runs and weighted according to the standard deviation from
fitting error and shot to shot fluctuations. Error bars, 61s.e.
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order of one second, which is an extremely long time compared to the
trapping period (44ms). The underlying explanation for spin current
reversal and the slow relaxation can be found in the extremely short
mean free path and the high collision rate between opposite-spin
atoms at unitarity. According to the above estimate, the spin diffusivity
is approximately B/m, which for 6Li is (100mm)2 s21. The atom clouds
in the experiment have a length of the order of 100mm, and it takes
them of the order of a second to diffuse through each other. So we are
indeed observing quantum-limited spin diffusion. The initial bounces
will occur when themean free path of a spin-up atom in the spin-down
cloud is smaller than the spin-down cloud size, that is, when the
mixture is hydrodynamic. Instead of quickly diffusing into the spin-
down region, it is then more likely that the spin-up atom is scattered
back into the spin-up region, where it can propagate ballistically.
After long evolution times, the oscillations shown in Fig. 1 have been

damped out, and the displacement between the centres of mass is
much smaller than the widths of the clouds. The relaxation dynamics
can then be described by linear response theory, giving access to the
spin transport coefficients. The spin drag coefficient Csd is defined as
the rate of momentum transfer between opposite-spin atoms12,14, and
is therefore related to the collision rate. From the Boltzmann transport
equation, the relaxation of the displacement d near equilibrium follows
the differential equation22

C sd
_dzv2

zd~0

in the case of strongly overdamped motion realized here. Fitting an
exponential with decay time t to the displacement gives the spin drag
coefficient of the trapped systemasC sd~v2

zt. In thedeeply degenerate
regime, the relationship between the measured and the microscopic
spin drag coefficient might be affected by a weak enhancement of the
effective mass23 and the attractive interaction energy between the
clouds10,22,24.
The spindrag coefficient is found tobegreatest on resonance, and thus

spin conduction is slowest on resonance (see Supplementary Informa-
tion). On resonance, Csd in a homogeneous system must be given by a
function of the reduced temperature T/TF times the Fermi rate EF/B. At
high temperatures, we expect the spin drag coefficient to obey a universal
scaling C sd!nsv! EF

B T=TFð Þ{1=2. In Fig. 2 we show the spin drag
coefficient as a function of T/TF; Csd is normalized by EF/B, where EF
and TF are the local values at the centre of total mass. We observe T21/2

scaling for T/TF. 2, finding C sd~0:16 1ð Þ EFB T=TFð Þ{1=2. At lower
temperatures, we observe a crossover from classical to non-classical
behaviour as the spin drag coefficient reaches a maximum of approxi-
mately 0.1EF/B near the Fermi temperature.We interpret this saturation
of the spin drag coefficient as a consequence of Fermi statistics and
unitarity4,5, as s and v approach values determined by the Fermi wave-
vector kF. The spin drag coefficient is inversely proportional to the spin
conductivity, which describes the spin current response to an external
spin-dependent force. Near the Fermi temperature, the maximum spin
drag coefficient corresponds to a minimum spin conductivity of the
order of kF/B. This is the slowest spin conduction possible in three
dimensions in the absence of localization.
At low temperatures, the spin drag coefficient decreases with

decreasing temperature. Reduced spin drag at low temperatures is
expected in Fermi liquids owing to Pauli blocking11,18,22,24,25, and is also
expected in one-dimensional Fermi gases26. In the case of collective
density (rather than spin) excitations, it was shown that pairing cor-
relations enhance the effective collision rate dramatically as the tem-
perature is lowered6. The effect of pairing on the spin drag coefficient
maybe qualitatively different. In a simple picture, spin currents require
the flow of unpaired atoms, whereas collective density excitations
affect paired and unpaired atoms alike.
Comparing the relaxation rate to the gradient in spin density allows

us to also measure the spin diffusivityDs. At the centre of the trap, the
spin current density Js is given by the spin diffusion equation27
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Figure 1 | Observation of spin current reversal in a resonant collision
between two oppositely spin-polarized clouds of fermions. a, b, Total
column density (a) and the difference in column densities (b: red, spin up; blue,
spin down) during the first 20ms after the collision. The central column
densities here are typically 73 109 cm22. Strong repulsion is observed that
leads to a high-density interface. c, The centre of mass separation initially
oscillates at 1.63(2) times the axial trap frequency of 22.8Hz (see
Supplementary Information) before decaying exponentially at later times. The
initial atom number per spin state is 1.23 106, and the temperature 200ms
after the collision and later is 0.5TF, withTF the Fermi temperature at the centre
of each cloud.d, The trapping potentialV is harmonic along the symmetry axis.
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Figure 2 | Spin drag coefficient of a trapped Fermi gas with resonant
interactions. The spin drag coefficientCsd is normalized by the Fermi rateEF/B
at the trap centre, whereas the temperature is normalized by TF5EF/kB. We
find agreement between measurements taken at three different axial trapping
frequencies, 22.8Hz (red circles), 37.5Hz (blue triangles) and 11.2Hz (black
squares). The data for T/TF. 2 fit to a T21/2 law (solid line). Dashed line, a
power law fit for T/TF, 0.5 to show the trend. Each point is a mean from
typically three determinations ofCsd, each obtained from a time series of about
30 experimental runs and weighted according to the standard deviation from
fitting error and shot to shot fluctuations. Error bars, 61s.e.
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Js~{Ds
L n:{n;
! "

Lz
where n"(#) is the density of spin-up (spin-down) atoms. We calculate
Js using the trap-averaged velocity as Js~ 1

2 n:zn;
! "

_d, where the
densities are evaluated at the centre of total mass.
We find that the spin diffusivity is at a minimumwhen interactions

are resonant (see Supplementary Information). The increase in spin
diffusivity for positive scattering lengtha, aswell as the decrease in spin
drag, argues against the existence of a ferromagnetic state in repulsive
Fermi gases, for which diffusion should stop entirely9,11. Figure 3
reports the measured spin diffusivity as a function of temperature at
unitarity. In the high-temperature limit on resonance, one expects
Ds / v/ns / T3/2. At high temperatures, we indeed find this temper-
ature dependence, with a fit giving Ds~5:8 2ð Þ B

m T=TFð Þ3=2 for
T/TF. 2. In the degenerate regime, the spin diffusivity is seen to attain
a limiting value of 6.3(3)B/m.
When comparing these results to theoretical calculations, it is

important to account for the inhomogeneous density distributions
and velocity profiles. For a homogeneous system on resonance, and
at high temperatures compared to the Fermi temperature, we predict
Ds~1:11 B

m T=TFð Þ3=2 and C sd~0:90 EF
B T=TFð Þ{1=2 (see Supplemen-

tary Information). The measured spin drag coefficient is smaller by a
factor of 0.90/0.16(1)5 5.6(4) while the spin diffusivity is larger by
about the same factor, 5.8(2)/1.115 5.3(2), compared to a homogen-
eous system at the density of the centre of total mass. These factors
reflect the inhomogeneity of the system and agree with an estimate
from the Boltzmann transport equation (see Supplementary Informa-
tion). The emergence of a superfluid core at our lowest tempera-
tures will further modify the ratio of trap-averaged to local transport
coefficients.
Finally, the measured transport coefficients give for the first time

access to the temperature dependence of the spin susceptibility, xs(T),

in strongly interacting Fermi gases. Defined as xs~
L n:{n;
! "

L m:{m;
! " , the

spin susceptibility describes the spin response to an infinitesimal effec-
tive magnetic field or chemical potential difference m"2m# applied to
the gas, and is a crucial quantity that can discriminate between differ-
ent states of matter10. In a magnetic field gradient, particles with
opposite spin are forced apart at a rate determined by the spin con-
ductivity ss, while diffusion acts to recombine them. The balance
between the processes of diffusion and conduction therefore deter-
mines the resulting magnetization gradient, a connection expressed

in the Einstein relation11 xs5ss/Ds. Assuming the standard rela-
tion11,14 ss5 n/(mCsd),

xs~
1

mdv2
z

L n:{n;
! "

Lz

where
L n:{n;ð Þ

Lz is evaluated near the trap centre. The inhomogeneous
trapping potential does not affect the measurement of xs in the hydro-
dynamic limit at high temperatures (see Supplementary Information).
Close to the transition to superfluidity, interaction effects may modify
the relation between ss and Csd.
Figure 4 reports our findings for the spin susceptibility at unitarity, as

a function of the dimensionless temperature T/TF. At high tempera-
tures, we observe the Curie law xs5n/(kBT), where kB is Boltzmann’s
constant. In this classical regimeof uncorrelated spins, the susceptibility
equals the (normalized) compressibility of the gas n2k5 hn/hm that
we also directly obtain from our profiles. At degenerate tempera-
tures, the measured spin susceptibility becomes smaller than the nor-
malized compressibility. This is expected for a Fermi liquid, where

xs~
3n
2EF

1
1zFa

0
and k~

3
2nEF

1
1zFs

0
with Landau parameters Fs

0 and

Fa
0 describing the density (s) and spin (a) response

10. The spin suscepti-
bility is expected to strongly decrease at sufficiently low temperatures in
the superfluid phase, as pairs will form that will not break in the pres-
ence of an infinitesimal magnetic field. It is currently debated whether
the strongly interacting Fermi gas above the superfluid transition tem-
perature is a Fermi liquid23 or a state with an excitation gap (pseudo-
gap)28,29. The opening of a gap in the excitation spectrum would be
revealed as a downturn of the spin susceptibility below a certain tem-
perature. Such a downturn is not observed in xs down to T/TF< 0.2,
and therefore our spin susceptibility data agree down to this point with
the expected behaviour for a Fermi liquid.
In conclusion, we have studied spin transport in strongly interacting

Fermi gases. The spin diffusivity was found to attain a limiting value of
about 6.3B/m, establishing the quantum limit of diffusion for strongly
interacting Fermi gases. Away from resonance, the diffusivity increases.
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Figure 3 | Spin diffusivity of a trapped Fermi gas. Shown is the spin
diffusivity on resonance (Ds, normalized by B/m; filled circles) as a function of
the dimensionless temperature T/TF. At high temperatures, Ds obeys the
universal T 3/2 behaviour (solid line). At low temperatures, Ds approaches a
constant value of 6.3(3)B/m for temperatures below about 0.5TF, establishing
the quantum limit of spin diffusion for strongly interacting Fermi gases. Error
bars, 61s.e.
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An odd number of gapless Dirac fermions is guaranteed to exist at a surface of a strong topological

insulator. We show that in a thin-film geometry and under external bias, electron-hole pairs that reside in

these surface states can condense to form a novel exotic quantum state which we propose to call

‘‘topological exciton condensate’’ (TEC). This TEC is similar in general terms to the exciton condensate

recently argued to exist in a biased graphene bilayer, but with different topological properties. It exhibits a

host of unusual properties including a stable zero mode and a fractional charge !e=2 carried by a singly

quantized vortex in the TEC order parameter.

DOI: 10.1103/PhysRevLett.103.066402 PACS numbers: 71.35."y, 71.10.Pm, 73.20."r

Introduction.—Recent advances in studies of band insu-
lators with strong spin-orbit coupling revealed the exis-
tence of new topological invariants that characterize these
materials [1]. Among the three-dimensional time-reversal
(T ) invariant insulators, the most interesting phase implied
by this classification is the ‘‘strong’’ topological insulator
(STI), characterized by gapless fermionic states residing at
its surface with an odd number of topologically protected
nodes. These gapless states exhibit linear dispersion and
behave as massless Dirac fermions familiar from the phys-
ics of graphene. Several real materials have been identified
as STIs in pioneering experiments [2,3] completed shortly
after the theoretical predictions [4]. These rapid develop-
ments give hope that the new state of quantum matter
realized in STIs might be relatively common in nature
and raise the prospects of future practical applications.

The existence of an odd number of Dirac fermions leads
to a number of exotic properties associated with surfaces of
a STI. These include an exotic superconducting state in-
duced by a proximity effect that supports Majorana fermi-
ons [5], a T -breaking phase which exhibits a fractional
quantum Hall effect [6], and an unusual ‘‘axion’’ electro-
magnetic response [6,7].

The wealth of exotic phenomena listed above stems
from the possibility of inducing various types of mass
terms in the otherwise massless Dirac fermion states at
the surface of a STI. In this Letter we introduce and study a
new type of mass gap that can be induced by a Coulomb
interaction between the surface states of a thin STI film and
can be characterized as a ‘‘topological’’ exciton conden-
sate (TEC). The idea is motivated by recent proposals to
realize an exciton condensate in a symmetrically biased
graphene bilayer [8,9]. We argue below that TEC in a STI
filmmight be more easily realized than in graphene and is a
different, genuinely topological phase, distinguished by the
presence of a zero-energy mode and fractional charge
associated with its vortices.

Consider a film made of a STI placed inside a capacitor
as in Fig. 1(a). Imagine for simplicity that each surface
harbors a single Dirac cone with the chemical potential !
initially tuned to the neutral point ! ¼ 0. When the ca-
pacitor is charged the Fermi levels in the two layers move
in the opposite direction, creating a small electron Fermi
surface in one layer and a small hole Fermi surface in the
other. For arbitrarily weak repulsive interaction such a
system will form an exciton condensate which may be
pictured as a coherent liquid of electron-hole pairs residing
in different layers.
In what follows we use a simple model for the surface

states to show how exciton condensation can be induced by
the interlayer Coulomb interaction. By examining this
model we then deduce some interesting properties of the
underlying TEC. Specifically, we demonstrate that an iso-
lated singly quantized vortex in the complex scalar order
parameter characterizing TEC contains a zero mode and
carries topologically protected exact fractional charge

FIG. 1 (color online). (a) Schematic of the proposed device.
(b) The exciton condensate effectively joins the surfaces of the
STI film resulting in toroidal topology. Arrows illustrate the
magnetic field distribution of a planar monopole representing a
vortex in the effective theory.
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2

we include the influence of remote bands, which play a
supporting role. When a static screening approximation
is employed we find that the maximum critical tempera-
ture is of the order of Kelvins and occurs at rather low
carrier densities. Since static screening underestimates
the interlayer interaction, particularly for remote band
effects, higher condensation temperatures appear to be a
possibility.
This paper is organized as follows. In Sec. II we present

the main results of our analysis for the condensate struc-
ture and the transition temperature Tc. In Sec. III we
present our discussion and conclusions. Sec. IV describes
important technical details of the calculations used to
obtain the results described in Sec. II.

II. RESULTS

In this paper we estimate the transition temperature
and determine the optimal structure for exciton conden-
sation in double-layer graphene. The details of this cal-
culation are given in Sec. IV. We consider only order
parameters that have zero center-of-mass momentum.
Using mean-field theory we derive a self-consistent gap
equation, which we solve numerically in two approxima-
tions. First, to gain physical insight, we approximate the
screened Coulomb interaction by a contact interaction.
We determine the strength of the contact interaction by
performing an angular average over incoming and out-
going momenta on the Fermi surface. In this version of
our calculation, we use the full graphene dispersion, but
we find that substituting the Dirac dispersion with an
appropriate ultra-violet cutoff gives nearly identical re-
sults. In an effort to obtain more quantitatively reliable
results, we have also used a separable approximation to
the screened Coulomb interaction, similar to the form
used by Lozovik et al.,14 to determine the gap at zero
temperature. This calculation is carried out within the
Dirac approximation. The greatest source of uncertainty
in our work is the approximation used for the screened in-
terlayer interaction. In all of our explicit calculations we
use a static approximation which overestimates screen-
ing. The critical temperatures we obtain will therefore
tend to be underestimated.
In the present section we present the results of our

calculations. We describe the optimal condensate struc-
ture, which turns out to be the same in both approxi-
mations. We then discuss the phase diagrams we obtain.
The contact-interaction approximation leads to unphys-
ically high values for the transition temperature, as may
be expected for such a crude model. In contrast, using
the separable approximation for the screened Coulomb
interaction, we obtain a Tc of order of Kelvins for typical
carrier Fermi energies Vg = 0.25−0.5 meV and interlayer
distances d < 4 nm, respectively.

Top layer Bottom layer
! band ! band

" band " band

#!!

#""

#!"

#"!

Vg

Vg

FIG. 2: Dirac approximation band dispersions for the top and
bottom layer. The shaded areas correspond to filled states.
The four components of the order parameter in the band rep-
resentation are indicated. In the close-band approximation
only the (lower energy) valence band in the top layer (bottom
left) and the (higher energy) conduction band of the bottom
layer (top right) are retained.

A. Condensate structure

In the condensed state, the order parameter sublat-
tice structure (∆α,α′(k) with α,α′ = A,B) is opti-
mized. (The explicit definition of the order parameter
∆ is given in Sec. IV.) We find that the structure that is
optimal has the form ∆ ≡ (∆AA,∆AB,∆BA,∆BB) =
(∆1,∆2,−∆2,−∆1), where ∆1 # ∆2. The property
that ∆AA = −∆BB can be understood in terms of the
primary mechanism by which condensate formation low-
ers the energy of the system, namely the opening of an
avoided crossing gap between the conduction band of
one layer and the valence band of the other layer. In
the Dirac-band approximation the conduction and va-
lence band sublattice spinors are (1, exp(iφk))/

√
2 and

(1,− exp(iφk))
√
2 respectively, where k is momentum

measured from the Brillouin-zone corner and φk is the
angular orientation of this momentum. An order param-
eter with ∆AA = −∆BB couples these spinors with equal
strength at all φk.

We note that the same order parameter sublattice
structure is associated with the broken inversion symme-
try often thought15 to be plausible in isolated graphene
sheets. In that case, of course, the mean-field potential
couples sites in the same layer. Broken inversion symme-
try in an isolated graphene sheet is analogous to chiral
symmetry breaking in elementary particle physics and is
most likely to occur in neutral sheets without any carri-
ers. Experiments appear to establish that spontaneous
gaps do not in fact occur in single-layer graphene; angle-
resolved photoemission experiments16 are perhaps most
conclusive in this respect. Spontaneous gaps do how-
ever appear17 in neutral graphene sheets when a mag-
netic field is applied. It is sometimes argued18 that the
appearance of gaps in a field demonstrates that this or-
der is barely avoided and latent even in the absence of a
field. (For a contrary view see Ref. [ 19]). We will show

�2 = �TI � �1, �3
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Model	
  Hamiltonian	
  and	
  “closed-­band”	
  
approximation
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  Duine,	
  M.	
  Polini,	
  and	
  G.	
  Vignale,	
  arXiv:1108.2298
1)	
  Inter-­‐	
  and	
  intra-­‐layer	
  screened	
  Coulomb	
  interactions	
  calculated	
  e.g.	
  in	
  

R.E.V.	
  Profumo,	
  M.	
  Polini,	
  R.	
  Asgari,	
  R.	
  Fazio,	
  and	
  A.H.	
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  Phys.	
  Rev.	
  B	
  82,	
  085443	
  (2010)
2)	
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  a	
  study	
  of	
  the	
  incluence	
  of	
  remote	
  bands	
  see:	
  

M.P.	
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  H.T.C.	
  Stoof,	
  R.A.	
  Duine,	
  and	
  A.H.	
  MacDonald,	
  arXiv:1107.4477
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Two	
  surface	
  states	
  described	
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  a	
  
massless	
  Dirac	
  fermion	
  model

2

we include the influence of remote bands, which play a
supporting role. When a static screening approximation
is employed we find that the maximum critical tempera-
ture is of the order of Kelvins and occurs at rather low
carrier densities. Since static screening underestimates
the interlayer interaction, particularly for remote band
effects, higher condensation temperatures appear to be a
possibility.
This paper is organized as follows. In Sec. II we present

the main results of our analysis for the condensate struc-
ture and the transition temperature Tc. In Sec. III we
present our discussion and conclusions. Sec. IV describes
important technical details of the calculations used to
obtain the results described in Sec. II.

II. RESULTS

In this paper we estimate the transition temperature
and determine the optimal structure for exciton conden-
sation in double-layer graphene. The details of this cal-
culation are given in Sec. IV. We consider only order
parameters that have zero center-of-mass momentum.
Using mean-field theory we derive a self-consistent gap
equation, which we solve numerically in two approxima-
tions. First, to gain physical insight, we approximate the
screened Coulomb interaction by a contact interaction.
We determine the strength of the contact interaction by
performing an angular average over incoming and out-
going momenta on the Fermi surface. In this version of
our calculation, we use the full graphene dispersion, but
we find that substituting the Dirac dispersion with an
appropriate ultra-violet cutoff gives nearly identical re-
sults. In an effort to obtain more quantitatively reliable
results, we have also used a separable approximation to
the screened Coulomb interaction, similar to the form
used by Lozovik et al.,14 to determine the gap at zero
temperature. This calculation is carried out within the
Dirac approximation. The greatest source of uncertainty
in our work is the approximation used for the screened in-
terlayer interaction. In all of our explicit calculations we
use a static approximation which overestimates screen-
ing. The critical temperatures we obtain will therefore
tend to be underestimated.
In the present section we present the results of our

calculations. We describe the optimal condensate struc-
ture, which turns out to be the same in both approxi-
mations. We then discuss the phase diagrams we obtain.
The contact-interaction approximation leads to unphys-
ically high values for the transition temperature, as may
be expected for such a crude model. In contrast, using
the separable approximation for the screened Coulomb
interaction, we obtain a Tc of order of Kelvins for typical
carrier Fermi energies Vg = 0.25−0.5 meV and interlayer
distances d < 4 nm, respectively.

Top layer Bottom layer
! band ! band

" band " band

#!!

#""

#!"

#"!

Vg

Vg

FIG. 2: Dirac approximation band dispersions for the top and
bottom layer. The shaded areas correspond to filled states.
The four components of the order parameter in the band rep-
resentation are indicated. In the close-band approximation
only the (lower energy) valence band in the top layer (bottom
left) and the (higher energy) conduction band of the bottom
layer (top right) are retained.

A. Condensate structure

In the condensed state, the order parameter sublat-
tice structure (∆α,α′(k) with α,α′ = A,B) is opti-
mized. (The explicit definition of the order parameter
∆ is given in Sec. IV.) We find that the structure that is
optimal has the form ∆ ≡ (∆AA,∆AB,∆BA,∆BB) =
(∆1,∆2,−∆2,−∆1), where ∆1 # ∆2. The property
that ∆AA = −∆BB can be understood in terms of the
primary mechanism by which condensate formation low-
ers the energy of the system, namely the opening of an
avoided crossing gap between the conduction band of
one layer and the valence band of the other layer. In
the Dirac-band approximation the conduction and va-
lence band sublattice spinors are (1, exp(iφk))/

√
2 and

(1,− exp(iφk))
√
2 respectively, where k is momentum

measured from the Brillouin-zone corner and φk is the
angular orientation of this momentum. An order param-
eter with ∆AA = −∆BB couples these spinors with equal
strength at all φk.

We note that the same order parameter sublattice
structure is associated with the broken inversion symme-
try often thought15 to be plausible in isolated graphene
sheets. In that case, of course, the mean-field potential
couples sites in the same layer. Broken inversion symme-
try in an isolated graphene sheet is analogous to chiral
symmetry breaking in elementary particle physics and is
most likely to occur in neutral sheets without any carri-
ers. Experiments appear to establish that spontaneous
gaps do not in fact occur in single-layer graphene; angle-
resolved photoemission experiments16 are perhaps most
conclusive in this respect. Spontaneous gaps do how-
ever appear17 in neutral graphene sheets when a mag-
netic field is applied. It is sometimes argued18 that the
appearance of gaps in a field demonstrates that this or-
der is barely avoided and latent even in the absence of a
field. (For a contrary view see Ref. [ 19]). We will show
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p

Veff VeffV

Key	
  ingredient	
  in	
  the	
  Boltzmann	
  approach:	
  the	
  scattering	
  amplitude

ρD ∝
�

ki

|V (k1,k2,k3,k4)|2δ(k1 + k2 − k3 − k4)δ(�1 + �2 − �3 − �4)

× n1n2(1− n3)(1− n4)(v1 − v4) · (v2 − v3)
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The	
  effective	
  interaction	
  relevant	
  to	
  
the	
  excitonic	
  instability

t,k1t,k4

b,k3b,k2

t,k4 t,k1

b,k3b,k2

t,k1t,k4

b,k3b,k2

p + K

p

Veff Veff

V (k1,k2,k3,k4) � Veff(K,Ω) ≡ U

1− UΞ(K,Ω)

K = k1 − k3 Ω = �b(k1)− �t(k3)

Ξ(K,Ω) =
1
A

�

k

n(�t(k + K))− n(�b(k))
�b(k)− �t(k + K)− Ω− i0+

Approximate	
  scattering	
  amplitude

Pairing	
  susceptibility
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  Mink,	
  H.T.C.	
  Stoof,	
  R.A.	
  Duine,	
  M.	
  Polini,	
  and	
  G.	
  Vignale,	
  arXiv:1108.2298
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ρD = − β

2(2π)6e2nv2

�
dKdΩ

|Veff(K,Ω)|2

sinh2(βΩ/2)

×
�

dkdk��m [b(k;K,Ω)]�m [b(k�;K,Ω)]

× [vt(k� + K)− vt(k + K)] · [vb(k�)− vb(k)]

vt(b)(k) ≡∇�t(b)(k)
Group	
  velocities

b(k;K,Ω) ≡ n(�t(k + K))− n(�b(k))
�b(k)− �t(k + K)− Ω− i0+

Same	
  integrand	
  that	
  controls	
  the	
  pairing	
  susceptibility	
  
introduced	
  in	
  the	
  previous	
  slide
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Drag	
  resistivity	
  close	
  to	
  Tc

� log�T� Tc�

1 Tu�Tc 2 3
T�Tc

2

4

6
ΡD�ΡD

1− UΞ(K,Ω) � α(T ) + a(T )Uν0(βvK)2 + iUν0βΩ/4

ρD ∝
�

dKdΩ
(βΩ/4)2

sinh2(βΩ/2)
(ν0U)2K

[α(T ) + aUν0(βvK)2]2 + (Uν0βΩ/4)2

Expansion	
  of	
  the	
  effective	
  interaction	
  close	
  to	
  Tc	
  (the	
  coefcicient	
  a(T)	
  is	
  ultraviolet	
  convergent!)

Drag	
  resistivity	
  close	
  to	
  Tc

which	
  is	
  immediately	
  seen	
  to	
  diverge	
  logarithmically	
  when	
  T	
  approaches	
  Tc
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Mean-­^ield	
  critical	
  temperature	
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  static	
  screening)
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Increasing	
  carrier	
  density

Mean-­‐cield	
  critical	
  temperature	
  determined	
  from	
  the	
  pole	
  of	
  the	
  effective	
  interaction	
  in	
  a	
  
separable	
  approximation	
  (no	
  need	
  for	
  ultraviolet	
  cut-­‐off)	
  and	
  with	
  static	
  screening:

1 =
�

d2kV 2
sep(k)

n(�t(k))− n(�b(k))
�b(k)− �t(k)
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Stoner	
  ferromagnetism	
  (I)

Ĥ =
�

d3x
�

α∈{↑,↓}

ψ̂†
α(x)

�
−

�2∇x
2

2m
− µ

�
ψ̂α(x)+U

�
d3x ψ̂†

↑(x)ψ̂†
↓(x)ψ̂↓(x)ψ̂↑(x)

Minimal	
  model:	
  competition	
  between	
  kinetic	
  energy	
  and	
  short-­‐range	
  
repulsive	
  interactions	
  between	
  antiparallel-­‐spin	
  fermions:

χnn(q, ω) =
χ0(q, ω)

1− U

2
χ0(q, ω)

Density-­‐density	
  linear-­‐response	
  function

χSzSz (q, ω) =
χ0(q, ω)

1 +
U

2
χ0(q, ω)

Spin-­‐spin	
  linear-­‐response	
  function

1 +
U

2
lim
q→0

lim
ω→0

χ0(q, ω) = 0

Stoner	
  criterion	
  for	
  ferromagnetism:
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Stoner	
  ferromagnetism	
  (II)

1 +
U

2
lim
q→0

lim
ω→0

χ0(q, ω) = 0

Stoner	
  criterion	
  for	
  ferromagnetism:

R.A.	
  Duine	
  and	
  A.H.	
  MacDonald,	
  Phys.	
  Rev.	
  Lett.	
  95,	
  230403	
  (2005)

standard techniques, the atomic system can be prepared in
a pseudospin coherent (ferromagnetic) state, in which all
atoms share the same spinor:

j!FM!t"i #
1!!!
2

p
Y

jkj<21=3kF

!cyk;" $ ei!’%"Et=@"cyk;#"jvaci: (1)

(cyk;! creates an atom with momentum k and hyperfine spin
!.) In Eq. (1), ’ specifies the orientation of the magnetic
order parameter in the x% y plane and "E is the Zeeman
energy difference between the hyperfine states. (Since the
number of atoms in each is conserved, we can transform to
a rotating wave picture and let "E! 0.) Overall spin
polarizations in the ẑ direction are not accessible. This
fully spin coherent state always has a lower energy than
the phase-separated state discussed in Refs. [16–18] since,
in the magnetic language, the latter has a domain wall
which costs finite energy. Ferromagnetism in these systems
will be manifested by persistent coherence between hyper-
fine states.

In this Letter, we argue that ferromagnetism occurs on
the repulsive interaction side of a Feshbach resonance. Our
principle results are summarized in Figs. 1 and 3. We find
that (i) Hartree-Fock theory underestimates the tendency
towards ferromagnetism [42], (ii) the transition between
ferromagnetic and paramagnetic states is first-order at low
temperatures, and (iii) the coherence decay rate decreases
rapidly as the thermodynamic stability region of the ferro-
magnetic state is approached from the repulsive side of the
resonance.

Second-order perturbation theory.—It is convenient to
view the gas as a mixture of two independent noninteract-
ing gases of spinless fermions. The grand-canonical
Hamiltonian of the system is then

H #
Z
dx

X

!#f$;%g
 y
!!x"

"
% @2r2

2m
%"!

#
 !!x"

$ g
Z
dx y

$!x" y
%!x" %!x" $!x"; (2)

with g # 4#a@2=m. The chemical potentials are deter-
mined by n! # @p0!=@"!, where n! is the density of
atoms in hyperfine state j!i, and the pressure of the non-
interacting gas is given by

p0! # kBT
V

X

k
ln&1$ e%$!%k%"!"'; (3)

with kBT the thermal energy, V the volume, and %k #
@2k2=2m the single-particle dispersion. The entropy den-
sity is determined by s # @!p0$ $ p0%"=@T, and the total
free energy density is given by f!n$; n%" # e% Ts, with
the total energy density expressed as the sum of three
contributions, e # e!0" $ e!1" $ e!2". The first two contri-
butions correspond to Hartree-Fock theory and are given
by

e!0" $ e!1" # 1
V

X

k

$ X

!#f$;%g
Nk;!%k

%
$ gn$n%; (4)

where Nk;! is a Fermi occupation factor. The contribution
to the energy density that is second-order in interactions is
given by [13]

e!2" # % 2g2

V3

X0Nk1;$Nk2;%!Nk3;$ $ Nk4;%"
%k1

$ %k2
% %k3

% %k4

; (5)

where the prime indicates that the sum is over wave vectors
such that k1 $ k2 # k3 $ k4. The above second-order
correction takes into account the so-called unitarity limit,
i.e., the energy dependence of the vacuum scattering am-
plitude to all orders in ka, to second order [43]. Note also
that, because of the use of the renormalized interaction
strength g, this second-order term is not negative definite
as in the case of the electron gas.

Results.—The magnetization results, summarized in
Fig. 1, were obtained by numerically minimizing the total
free energy f!n%; n$" vs & ( !n$ % n%"=!n$ $ n%" for a
series of temperatures and total densities n$ $ n% #
k3F=3#

2. At zero temperature, we find that the system
becomes partially polarized if kFa ) 1:054 and reaches
the fully polarized state at kFa # 1:112. For higher tem-
peratures, interactions have to be stronger to polarize the
system. For temperatures T < Ttc, where Ttc ’ 0:2TF, with
TF the Fermi temperature, the transition is discontinuous,
and the magnetization exhibits a jump. The jump becomes
smaller with increasing temperature, vanishing at Ttc. The
inset shows the transition temperature as a function of kFa.
A line of first-order transitions, denoted by the solid line,
joins a line of continuous transitions, denoted by the dotted
line at T # Ttc and kFa # 1:119.

The first-order behavior at low temperatures is expected
on the basis of the arguments of Belitz et al. [11]. In our
case, the gapless modes that drive the transition first order
are particle-hole excitations. The coupling of these excita-
tions to the magnetization is neglected in Hartree-Fock
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FIG. 1. Magnetization & as a function of kFa, for various
temperatures. From left to right T=TF # 0; 0:1; 0:15; 0:2; 0:25.
The dashed lines indicate magnetization jumps. The inset shows
the critical temperature as a function of the gas parameter. The
solid line indicates first-order transitions, and the dotted line
second-order transitions. The dashed line is the Hartree-Fock
theory result.
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Spin-­drag	
  relaxation	
  rate

Icoll[fk,↑] ∝
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dDk�

(2π)D

�
dDq

(2π)D

� +∞

−∞
dω |A↑↓(q, ω)|2[fk,↑(1− fk+q,↑)fk�,↓(1− fk�−q,↓)

− fk+q,↑(1− fk,↑)fk�−q,↓(1− fk�,↓)]δ(ω − εk+q,↑ + εk,↑)δ(ω + εk�−q,↓ − εk�,↓)

Scattering	
  
amplitude

dP↑
dt

=
�

k

k Icoll[fk,↑]

Rate	
  of	
  change	
  of	
  spin-­‐up	
  momentum
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τsd(T )
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1

4MnkBT
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dω
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|A↑↓(q, ω)|2 [�m χ(0)(q,ω)]2

sinh2[ω/(2kBT )]

Spin-­‐drag	
  relaxation	
  rate	
  above	
  critical	
  temperature

Boltzmann	
  transport	
  and	
  collision	
  integral
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Effective	
  interactions

A↑↓(q, ω) = U����
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+
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4
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density fluctuations
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4
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� spin fluctuations

− 2
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⊥ spin fluctuations
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Temperature	
  dependence	
  of	
  the	
  
spin-­drag	
  relaxation	
  rate

Hint	
  for	
  experimentalists:
measure	
  the	
  damping	
  of	
  the	
  spin	
  dipole	
  mode:
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Summary

Thank	
  you	
  for	
  your	
  attention!
M.P.	
  Mink,	
  H.T.C.	
  Stoof,	
  R.A.	
  Duine,	
  MP,	
  and	
  G.	
  Vignale,	
  arXiv:1108.2298v1

Topological-­‐insulator	
   thin	
   cilms	
   and	
   double-­‐layer	
   graphene	
  
sheets	
  embedded	
  in	
  BN	
  might	
  be	
  ideal	
  hosts	
  for	
  supercluids	
  of	
  
spatially-­‐separated	
  electrons	
  and	
  holes

We	
  have	
  calculated	
  a	
  (pessimistic)	
  upper	
  bound	
  for	
  the	
  critical	
  
temperature	
  taking	
  into	
  account	
  static	
  screening	
  

We	
  have	
  presented	
  a	
  theory	
  of	
  Coulomb	
  drag	
  in	
  double-­‐layer-­‐
based	
   exciton	
   condensates	
   of	
   massless	
   Dirac	
   fermions	
  
demonstrating	
  that	
  it	
   is	
  logarithmically	
  enhanced	
  close	
  to	
  the	
  
critical	
  temperature	
  when	
  the	
  condensed	
  phase	
  is	
  approached	
  
from	
  above

What’s	
  next?	
  Contact-­‐less	
  probes	
  of	
  exciton	
  condensation	
   	
  are	
  
very	
  welcome:	
  ARPES!
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