Probing the topological exciton condensate via Coulomb drag

"Quantum Field Theory Aspects of Condensed Matter Physics" LNF - INFN, Frascati (Italy), September 6, 2011

Collaborators

Martijn Mink (ITP Utrecht, The Netherlands) Rembert Duine (ITP Utrecht, The Netherlands) Henk Stoof (ITP Utrecht, The Netherlands) Giovanni Vignale (UMO, USA)

This talk mainly based on:

*M.P. Mink, H.T.C. Stoof, R.A. Duine, M. Polini, and G. Vignale, arXiv:1108.2298v1 (2011)

See also:

R.A. Duine, M. Polini, H.T.C. Stoof, and G. Vignale, Phys. Rev. Lett. **104**, 220403 (2010)
 R.A. Duine, M. Polini, A. Raoux, H.T.C. Stoof, and G. Vignale, New J. Phys. **13**, 045010 (2011)

Outline

Drag-type experiments in CMP and cold atoms

- Coulomb drag between closely spaced electronic circuits ~ 1977
- Coulomb drag and semiconductor-bilayer exciton condensates ~ 1996
- Many-body effects in spin-polarized transport: spin drag ~ 2000
- Spin drag in electron liquids and cold atom gases: experiments ~ 2005-2011

Theory of Coulomb drag in the vicinity of exciton condensation

- Exciton condensates in topological-insulator thin films (and double-layer graphene)
- O Model Hamiltonian and Boltzmann equation
- Effective interactions: the Bethe-Salpeter equation

Numerical results and discussion

- Drag resistivity close to the critical temperature
- Mean-field critical temperature with static screening
- Comparison of these results with those for spin drag close to a ferromagnetic instability

Conclusions and future perspectives

Outline

Drag-type experiments in CMP and cold atoms

- Coulomb drag between closely spaced electronic circuits ~ 1977
- Coulomb drag and semiconductor-bilayer exciton condensates ~ 1996
- Many-body effects in spin-polarized transport: spin drag ~ 2000
- Spin drag in electron liquids and cold atom gases: experiments ~ 2005-2011

² Theory of Coulomb drag in the vicinity of exciton condensation

- Exciton condensates in topological-insulator thin films (and double-layer graphene)
- O Model Hamiltonian and Boltzmann equation
- Effective interactions: the Bethe-Salpeter equation

Numerical results and discussion

- Drag resistivity close to the critical temperature
- Mean-field critical temperature with static screening
- Comparison of these results with those for spin drag close to a ferromagnetic instability
- Conclusions and future perspectives

Coulomb drag

M.B. Pogrebinskii, Sov. Phys. Semicond. 11, 372 (1977)
P.J. Price, Physica 117B, 750 (1983)
L. Zheng and A.H. MacDonald, Phys. Rev. B 48, 8203 (1993)
A.-P. Jauho and H. Smith, Phys. Rev. B 47, 4420 (1993)
A. Kamenev and Y. Oreg, Phys. Rev. B 52, 7516 (1995)

In a Fermi liquid:

$$R_{\rm D} \equiv rac{V_{
m drag}}{I_{
m drive}} \propto rac{1}{ au_{
m D}} \sim T^2$$
 ... what else ?

Coulomb drag in double-layer graphene

This slide contains experimental data from the **UT Austin** group [S. Kim *et al.*, Phys. Rev. B **83**, 161401(R) (2011)] but there are also (yet unpublished, I believe) data from the Manchester and the Columbia groups

See *e.g.* M.I. Katsnelson, Phys. Rev. B **84**, 041407(R) (2011) and other recent articles by Peres, Castro Neto, Das Sarma, etc

Coulomb drag in an electron-hole bilayer

J.A. Seamons et al., Phys. Rev. Lett. 102, 026804 (2009)

For a theoretical discussion of drag in an e-h bilayer see: G. Vignale and A.H. MacDonald, Phys. Rev. Lett. **76**, 2786 (1996): in the condensed phase B.Y-.K. Hu, Phys. Rev. Lett. **85**, 820 (2000): above T_c (pairing fluctuations)

Friction in spin-polarized transport: spin Coulomb drag

Force between particles (electrons, atoms, etc) with antiparallel (pseudo)spin

$$F_{\sigma\bar{\sigma}} = -m\frac{n_{\bar{\sigma}}}{n}\frac{v_{\sigma} - v_{\bar{\sigma}}}{\tau_{\rm sd}}$$

Rate of change of spin-up momentum

$$\frac{dP_{\uparrow}}{dt} = -\frac{1}{\tau_{\rm sd}}P_{\uparrow}$$

Leading term in the spin drag relaxation rate starts at second order

$$\frac{1}{\tau_{\rm sd}} \propto \frac{n}{n_{\uparrow}n_{\downarrow}k_{\rm B}T} \int \frac{d^{D}\boldsymbol{q}}{(2\pi)^{D}} \frac{q^{2}}{D} v_{q}^{2} \int_{0}^{+\infty} \frac{d\omega}{\pi} \frac{\Im m \chi_{\uparrow}^{(0)}(\boldsymbol{q},\omega) \Im m \chi_{\downarrow}^{(0)}(\boldsymbol{q},\omega)}{\sinh^{2}[\hbar\omega/(2k_{\rm B}T)]}$$

I. D'Amico and G. Vignale, Phys. Rev. B 62, 4853 (2000)

Spin Coulomb drag: experimental (semiconductor quantum wells)

Experimental: C.P. Weber *et al.*, Nature **437**, 1330 (2005) Theory: S.M. Badalyan, C.S. Kim, and G. Vignale, Phys. Rev. Lett. **100**, 016603 (2008)

Spin drag: experimental (cold Fermi gases at unitarity)

Outline

- Drag-type experiments in CMP and cold atoms
- Coulomb drag between closely spaced electronic circuits ~ 1977
- Coulomb drag and semiconductor-bilayer exciton condensates ~ 1996
- Many-body effects in spin-polarized transport: spin drag ~ 2000
- Spin drag in electron liquids and cold atom gases: experiments ~ 2005-2011

Theory of Coulomb drag in the vicinity of exciton condensation

- Exciton condensates in topological-insulator thin films (and double-layer graphene)
- O Model Hamiltonian and Boltzmann equation
- Effective interactions: the Bethe-Salpeter equation
- Numerical results and discussion
- Drag resistivity close to the critical temperature
- Mean-field critical temperature with static screening
- Comparison of these results with those for spin drag close to a ferromagnetic instability
- Conclusions and future perspectives

3D topological insulators

D. Hsieh et al., Nature 460, 1101 (2009) (Hasan group)

Concrete examples of topological insulators: Bi_{1-x}Sb_x, Bi₂Se₃, Bi₂Te₃, etc

See *e.g.* M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. **82**, 3045 (2010); X.-L. Qi and S.-C. Zhang, arXiv:1008.2026

Topological exciton condensates

PRL 103, 066402 (2009) PHYSICAI

PHYSICAL REVIEW LETTERS

week ending 7 AUGUST 2009

Exciton Condensation and Charge Fractionalization in a Topological Insulator Film

B. Seradjeh,¹ J. E. Moore,^{2,3} and M. Franz⁴

 ¹Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
 ²Department of Physics, University of California, Berkeley, California 94720, USA
 ³Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
 ⁴Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1 (Received 10 February 2009; published 7 August 2009)

An odd number of gapless Dirac fermions is guaranteed to exist at a surface of a strong topological insulator. We show that in a thin-film geometry and under external bias, electron-hole pairs that reside in these surface states can condense to form a novel exotic quantum state which we propose to call "topological exciton condensate" (TEC). This TEC is similar in general terms to the exciton condensate recently argued to exist in a biased graphene bilayer, but with different topological properties. It exhibits a host of unusual properties including a stable zero mode and a fractional charge $\pm e/2$ carried by a singly quantized vortex in the TEC order parameter.

DOI: 10.1103/PhysRevLett.103.066402

PACS numbers: 71.35.-y, 71.10.Pm, 73.20.-r

Other candidate system: Graphene-Boron Nitride heterostructures

courtesy of K. Novoselov

- Dramatic quality improvement with respect to conventional samples on *e.g.* SiO₂ (major sources of scattering seem to be absent)
- Complete tunability (inter-layer tunneling, inter-layer distance, etc)

Yu. E. Lozovik and A.A. Sokolik, JETP Lett. **87**,55 (2008) H. Min *et al.*, Phys. Rev. B **78**, 121401(R) (2008) C.-H. Zhang and Y.N. Joglekar, Phys. Rev. B **77**, 205426 (2008)

Model Hamiltonian and "closed-band" approximation

M.P. Mink, H.T.C. Stoof, R.A. Duine, M. Polini, and G. Vignale, arXiv:1108.2298
1) Inter- and intra-layer screened Coulomb interactions calculated *e.g.* in
R.E.V. Profumo, M. Polini, R. Asgari, R. Fazio, and A.H. MacDonald, Phys. Rev. B 82, 085443 (2010)
2) For a study of the influence of remote bands see:
M.P. Mink, H.T.C. Stoof, R.A. Duine, and A.H. MacDonald, arXiv:1107.4477

Model Hamiltonian and "closed-band" approximation

M.P. Mink, H.T.C. Stoof, R.A. Duine, M. Polini, and G. Vignale, arXiv:1108.2298
1) Inter- and intra-layer screened Coulomb interactions calculated *e.g.* in
R.E.V. Profumo, M. Polini, R. Asgari, R. Fazio, and A.H. MacDonald, Phys. Rev. B 82, 085443 (2010)
2) For a study of the influence of remote bands see:
M.P. Mink, H.T.C. Stoof, R.A. Duine, and A.H. MacDonald, arXiv:1107.4477

Boltzmann-equation approach to the drag resistivity (I)

$$egin{aligned}
ho_{\mathrm{D}} &\propto & \sum_{m{k}_i} |V(m{k}_1,m{k}_2,m{k}_3,m{k}_4)|^2 \delta(m{k}_1+m{k}_2-m{k}_3-m{k}_4) \delta(\epsilon_1+\epsilon_2-\epsilon_3-\epsilon_4) \ & imes & n_1 n_2 (1-n_3) (1-n_4) (m{v}_1-m{v}_4) \cdot (m{v}_2-m{v}_3) \end{aligned}$$

Key ingredient in the Boltzmann approach: the scattering amplitude

t,
$$k_4$$
 t, k_1 t, k_4 t, k_1 t, k_4
b, k_2 b, k_3 b, k_2 b, k_3 b, k_2

M.P. Mink, H.T.C. Stoof, R.A. Duine, M. Polini, and G. Vignale, arXiv:1108.2298

The effective interaction relevant to the excitonic instability

Approximate scattering amplitude

$$V(\boldsymbol{k}_1, \boldsymbol{k}_2, \boldsymbol{k}_3, \boldsymbol{k}_4) \simeq V_{\text{eff}}(\boldsymbol{K}, \Omega) \equiv \frac{U}{1 - U\Xi(\boldsymbol{K}, \Omega)}$$

Pairing susceptibility

$$\Xi(\mathbf{K},\Omega) = \frac{1}{A} \sum_{\mathbf{k}} \frac{n(\epsilon_{\rm t}(\mathbf{k}+\mathbf{K})) - n(\epsilon_{\rm b}(\mathbf{k}))}{\epsilon_{\rm b}(\mathbf{k}) - \epsilon_{\rm t}(\mathbf{k}+\mathbf{K}) - \Omega - i0^+}$$

M.P. Mink, H.T.C. Stoof, R.A. Duine, M. Polini, and G. Vignale, arXiv:1108.2298

Final equation for the drag resistivity (II)

$$egin{aligned}
ho_{\mathrm{D}} &= -rac{eta}{2(2\pi)^6 e^2 n v^2} \int dm{K} d\Omega rac{|V_{\mathrm{eff}}(m{K},\Omega)|^2}{\sinh^2(eta\Omega/2)} \ & imes \int dm{k} dm{k}' \Im m \left[b(m{k};m{K},\Omega)
ight] \Im m \left[b(m{k}';m{K},\Omega)
ight] \ & imes \left[m{v}_{\mathrm{t}}(m{k}'+m{K}) - m{v}_{\mathrm{t}}(m{k}+m{K})
ight] \cdot \left[m{v}_{\mathrm{b}}(m{k}') - m{v}_{\mathrm{b}}(m{k})
ight] \end{aligned}$$

Group velocities

$$m{v}_{
m t(b)}(m{k})\equivm{
abla}\epsilon_{
m t(b)}(m{k})$$

Same integrand that controls the pairing susceptibility introduced in the previous slide

$$b(\boldsymbol{k};\boldsymbol{K},\Omega) \equiv \frac{n(\epsilon_{\rm t}(\boldsymbol{k}+\boldsymbol{K})) - n(\epsilon_{\rm b}(\boldsymbol{k}))}{\epsilon_{\rm b}(\boldsymbol{k}) - \epsilon_{\rm t}(\boldsymbol{k}+\boldsymbol{K}) - \Omega - i0^+}$$

M.P. Mink, H.T.C. Stoof, R.A. Duine, M. Polini, and G. Vignale, arXiv:1108.2298

Outline

- Drag-type experiments in CMP and cold atoms
- Coulomb drag between closely spaced electronic circuits ~ 1977
- Coulomb drag and semiconductor-bilayer exciton condensates ~ 1996
- Many-body effects in spin-polarized transport: spin drag ~ 2000
- Spin drag in electron liquids and cold atom gases: experiments ~ 2005-2011

Theory of Coulomb drag in the vicinity of exciton condensation

- Exciton condensates in topological-insulator thin films (and double-layer graphene)
- O Model Hamiltonian and Boltzmann equation
- Effective interactions: the Bethe-Salpeter equation

Numerical results and discussion

- Drag resistivity close to the critical temperature
- Mean-field critical temperature with static screening
- Comparison of these results with those for spin drag close to a ferromagnetic instability

Conclusions and future perspectives

Drag resistivity close to T_c

Expansion of the effective interaction close to T_c (the coefficient a(T) is ultraviolet convergent!)

$$1 - U\Xi(\mathbf{K}, \Omega) \simeq \alpha(T) + a(T)U\nu_0(\beta vK)^2 + iU\nu_0\beta\Omega/4$$

Drag resistivity close to T_c

$$\rho_{\rm D} \propto \int dK d\Omega \frac{(\beta \Omega/4)^2}{\sinh^2(\beta \Omega/2)} \frac{(\nu_0 U)^2 K}{[\alpha(T) + aU\nu_0(\beta vK)^2]^2 + (U\nu_0\beta \Omega/4)^2}$$

which is immediately seen to diverge **logarithmically** when T approaches T_c

Mean-field critical temperature (with static screening)

Mean-field critical temperature determined from the pole of the effective interaction in a **separable** approximation (no need for ultraviolet cut-off) and with **static** screening:

$$1 = \int d^2 \boldsymbol{k} V_{\rm sep}^2(\boldsymbol{k}) \frac{n(\epsilon_{\rm t}(\boldsymbol{k})) - n(\epsilon_{\rm b}(\boldsymbol{k}))}{\epsilon_{\rm b}(\boldsymbol{k}) - \epsilon_{\rm t}(\boldsymbol{k})}$$

Comparison with our recent theory for the spin-drag relaxation rate close to a ferromagnetic instability

R.A. Duine, MP, H.T.C. Stoof, and G. Vignale, Phys. Rev. Lett. 104, 220403 (2010)

Stoner ferromagnetism (I)

Minimal model: competition between kinetic energy and short-range repulsive interactions between antiparallel-spin fermions:

$$\hat{\mathcal{H}} = \int d^3 \boldsymbol{x} \sum_{\alpha \in \{\uparrow,\downarrow\}} \hat{\psi}^{\dagger}_{\alpha}(\boldsymbol{x}) \left(-\frac{\hbar^2 \nabla_{\boldsymbol{x}}^2}{2m} - \mu \right) \hat{\psi}_{\alpha}(\boldsymbol{x}) + U \int d^3 \boldsymbol{x} \, \hat{\psi}^{\dagger}_{\uparrow}(\boldsymbol{x}) \hat{\psi}^{\dagger}_{\downarrow}(\boldsymbol{x}) \hat{\psi}_{\downarrow}(\boldsymbol{x}) \hat{\psi}_{\uparrow}(\boldsymbol{x})$$

Density-density linear-response function

Spin-spin linear-response function

$$\chi_{nn}(q,\omega) = \frac{\chi_0(q,\omega)}{1 - \frac{U}{2}\chi_0(q,\omega)} \qquad \qquad \chi_{S_z S_z}(q,\omega) = \frac{\chi_0(q,\omega)}{1 + \frac{U}{2}\chi_0(q,\omega)}$$

Stoner criterion for ferromagnetism:

$$1 + \frac{U}{2} \lim_{q \to 0} \lim_{\omega \to 0} \chi_0(q, \omega) = 0$$

Stoner ferromagnetism (II)

Stoner criterion for ferromagnetism:

$$1 + \frac{U}{2} \lim_{q \to 0} \lim_{\omega \to 0} \chi_0(q, \omega) = 0$$

R.A. Duine and A.H. MacDonald, Phys. Rev. Lett. 95, 230403 (2005)

Spin-drag relaxation rate

Boltzmann transport and collision integral

$$I_{\text{coll}}[f_{\boldsymbol{k},\uparrow}] \propto \int \frac{d^{D}\boldsymbol{k}'}{(2\pi)^{D}} \int \frac{d^{D}\boldsymbol{q}}{(2\pi)^{D}} \int_{-\infty}^{+\infty} d\omega \ |A_{\uparrow\downarrow}(q,\omega)|^{2} [f_{\boldsymbol{k},\uparrow}(1-f_{\boldsymbol{k}+\boldsymbol{q},\uparrow})f_{\boldsymbol{k}',\downarrow}(1-f_{\boldsymbol{k}'-\boldsymbol{q},\downarrow}) \\ - f_{\boldsymbol{k}+\boldsymbol{q},\uparrow}(1-f_{\boldsymbol{k},\uparrow})f_{\boldsymbol{k}'-\boldsymbol{q},\downarrow}(1-f_{\boldsymbol{k}',\downarrow})] \delta(\omega - \varepsilon_{\boldsymbol{k}+\boldsymbol{q},\uparrow} + \varepsilon_{\boldsymbol{k},\uparrow}) \delta(\omega + \varepsilon_{\boldsymbol{k}'-\boldsymbol{q},\downarrow} - \varepsilon_{\boldsymbol{k}',\downarrow})$$

Rate of change of spin-up momentum

$$\frac{d\boldsymbol{P}_{\uparrow}}{dt} = \sum_{\boldsymbol{k}} \boldsymbol{k} \ I_{\text{coll}}[f_{\boldsymbol{k},\uparrow}]$$

Spin-drag relaxation rate above critical temperature

$$\frac{1}{\tau_{\rm sd}(T)} = \frac{1}{4Mnk_{\rm B}T} \int \frac{d^D q}{(2\pi)^D} \frac{q^2}{D} \int_{-\infty}^{+\infty} \frac{d\omega}{\pi} |A_{\uparrow\downarrow}(q,\omega)|^2 \frac{[\Im m \ \chi^{(0)}(q,\omega)]^2}{\sinh^2[\omega/(2k_{\rm B}T)]}$$

Effective interactions

Scattering amplitude: density, longitudinal and transverse spin fluctuations

C.A. Kukkonen and A.W. Overhauser, Phys. Rev. B **20**, 550 (1979) G.F. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (CUP, Cambridge, 2005) see also A.V. Chubukov and D.L. Maslov, Phys. Rev. Lett. **103**, 216401 (2009)

Temperature dependence of the spin-drag relaxation rate

R.A. Duine, MP, H.T.C. Stoof, and G. Vignale, Phys. Rev. Lett. 104, 220403 (2010)

Temperature dependence of the spin-drag relaxation rate

R.A. Duine, MP, H.T.C. Stoof, and G. Vignale, Phys. Rev. Lett. 104, 220403 (2010)

Summary

- Fopological-insulator thin films and double-layer graphene sheets embedded in BN might be ideal hosts for superfluids of spatially-separated electrons and holes
- We have calculated a (pessimistic) upper bound for the critical temperature taking into account static screening
- We have presented a theory of Coulomb drag in double-layerbased exciton condensates of massless Dirac fermions demonstrating that it is logarithmically enhanced close to the critical temperature when the condensed phase is approached from above
- What's next? Contact-less probes of exciton condensation are very welcome: **ARPES**!

Thank you for your attention!

M.P. Mink, H.T.C. Stoof, R.A. Duine, MP, and G. Vignale, arXiv:1108.2298v1