BF theory for 2+1 topological states of matter

A. Blasi, A. Braggio, M. Carrega, D. Ferraro, N. Maggiore, N.M.

September, 2011

イロト イポト イヨト イヨト

A. Blasi, A. Braggio, M. Carrega, D. Ferraro, N. Maggiore, N.I BF theory for 2+1 topological states of matter

Outline

- Topological states of matter: an experimental overview
- Effective Field theory for QHE: Chern-Simons theory
- Time reversal invariant states of matter: Abelian and non-Abelian BF model
- BF model with boundary through the Symanzik's approach

イロト イポト イヨト イヨト

Integer quantum Hall effect

- Discovered by K. Von Klitzing in 1980.
- 2d electron gas,
 T = 4K and

$$B=10T$$
.

► Plateaus observed at $R_H = \frac{h}{ie^2}, R_H =$

 $25.812k\Omega, i = 1,$ $R_L = 0.$

イロト イヨト イヨト イヨト

Landau levels

Edge states Quantum spin Hall effect Chern-Simons theories Abelian BF theory Non-Abelian BF theory with boundary Conclusion

Landau levels

The Hamiltonian of a free particle in a magnetic field, $\mathbf{A} = B(-y, 0, 0)$ (Landau gauge)

$$H = \frac{[\mathbf{p} + e\mathbf{A}(\mathbf{r})]^2}{2m}$$

• Energy levels
$$E_n = \hbar \omega_C (n + \frac{1}{2}), \ \omega_C = \frac{eB}{mc}$$
.

- Degeneracy $N_s = A \frac{B}{\Phi_0}$ (Flux quantum $\Phi_0 = \frac{hc}{e}$).
- Filling fraction $\nu = \frac{N_{el}}{N_s} = \frac{nhc}{eB}$.

• When
$$\nu = i$$
, $R_H = \frac{h}{e^2 i}$

・ロト ・回ト ・ヨト ・ヨト

Э

Edge states in the IQH

$$H = \frac{p_y^2}{2m} + \frac{m}{2}\omega_C(y - y_0)^2 + V_c(y)$$

$$y_0 = kl_B^2, \text{ where } l_B^2 = \sqrt{\frac{\hbar c}{eB}}.$$

A. Blasi, A. Braggio, M. Carrega, D. Ferraro, N. Maggiore, N.I BF theory for 2+1 topological states of matter

Э

Edge states in the IQH, the current

The current I_n (for a given LL) is given by

$$I_n = -\frac{e}{L} \sum_{k} \langle n, k | v_k | n, k \rangle = -\frac{e}{L\hbar} \sum_{k} \frac{\partial E_{n,k}}{\partial k}$$
$$I_n = -\frac{e}{h} (\mu_s - \mu_D) = \frac{e^2}{h} V$$

A. Blasi, A. Braggio, M. Carrega, D. Ferraro, N. Maggiore, N.I BF theory for 2+1 topological states of matter

Edge states in the IQH, the current

- Electrons are chiral and backscattering processes are suppressed by the sample dimension
- QH system is a very unusual electron liquid: bulk insulator with perfectly conducting edges

Fractional quantum Hall effect

- Discovered in 1981 by D. Tsui and H. Stormer.
- Laughlin wave function for

$$u = \frac{1}{2q+1}, q$$
integer

 Fractional charge excitations and statistics.

イロン イヨン イヨン イヨン

Quantum Spin Hall Effect

- no magnetic field
- strong spin-orbit coupling
- two edges with opposite chirality and spin

イロト イヨト イヨト イヨト

 time reversal invariance

Quantum Spin Hall Effect

Konig et al., Science 314, 2006

- observation of QSHE in HgTe quantum wells
- transition from insulator to topological insulator varying thickness of quantum well

イロト イヨト イヨト イヨト

3+1 D topological insulator

J. Moore, Nature 464, 2010, experiment by Hasan group

- observation of 3D topological insulator in *Bi*₂Se₃
- surface helical states
- domain wall fermions in lattice gauge theory

< ロ > < 同 > < 回 > < 正 > < 正

Effective field theory for QHE

- Electron in a flatland (2+1 D)
- Fundamental current symmetry of the gapped phase

$$\sigma_{xy} = \nu \frac{e^2}{h} \qquad \sigma_{xx} = 0$$

- Topological effective theory describe low energy physics
- Parity (P) and time-reversal (T) symmetries are broken due to external magnetic field

イロト イポト イヨト イヨト

Chern-Simons successfully describe it

Chern-Simons theory

Given the current expressed in terms of gauge field a_{μ}

$$J^{\mu} = -\frac{e}{2\pi} \epsilon^{\mu\nu\rho} \partial_{\nu} \mathbf{a}_{\rho} \tag{1}$$

the Lagrangian density satisfying the constrains on the current is

$$\mathcal{L}_{CS} = \frac{k}{2\pi} \epsilon^{\mu\nu\rho} \mathbf{a}_{\mu} \partial_{\nu} \mathbf{a}_{\rho} \tag{2}$$

イロト イポト イヨト イヨト

that is naturally the Chern-Simons theory (k integer)

Froehlich & Zee, NPB 91; Wen, Adv.Phys. 95,....

Fundamental properties of Chern-Simons theory

$$S = \int dx^{\alpha} \left(\underbrace{\frac{k}{4\pi} \epsilon^{\mu\nu\rho} a_{\mu} \partial_{\nu} a_{\rho}}_{Chern-Simons} - \underbrace{\frac{e}{2\pi} \epsilon^{\mu\nu\rho} a_{\mu} \partial_{\nu} A_{\rho}}_{Coupling with EM} - \underbrace{\frac{a_{\mu} j^{\mu}}{e^{Coupling with qp}}}_{Coupling with qp} \right)$$

 A_{μ} external electromagnetic (EM) field j^{μ} gauge field sources are the localized qp. Integrating out the a_{μ} fields we have

$$S_{A} = \int dx^{\alpha} \left(-\underbrace{\frac{e^{2}}{4\pi k} \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho}}_{Bulk \ conductance} + \underbrace{\frac{e}{k} A_{\mu} j^{\mu}}_{qp.charge} - \underbrace{\frac{\pi}{k} j^{\mu} \Delta_{\mu\nu} j^{\nu}}_{qp.statistics} \right)$$

For odd k we describe Laughlin states. Extension with many gauge field and non-Abelian statistics were proposed Wen, Adv. Phys. 95,...

A. Blasi, A. Braggio, M. Carrega, D. Ferraro, N. Maggiore, N. BF theory for 2+1 topological states of matter

Chern Simons with boundary: edge states

Imposing a confinement to the bulk theory (real sample) breaks gauge invariance. Requiring the full gauge invariance of the bulk+boundary theory leads naturally to require a chiral Kac-Moody algebra on the boundary

$$[A(z), A(z')] = \frac{2\pi}{k} \partial \delta(z - z')$$

where the chiral coordinate on the boundary is $z = (x + t)/\sqrt{2}$. We have 1+1 chiral boson $a_{\mu} = \partial_{\mu}\varphi$ corresponding to gapless modes, the edge states with action

$$S_{edge} = rac{k}{4\pi}\int dx dt \; \partial_x arphi (\partial_t - \partial_x) arphi$$

Wen, Adv.Phys. 95, Floreanini and Jackiw, PRL 59, 1987

A. Blasi, A. Braggio, M. Carrega, D. Ferraro, N. Maggiore, N. BF theory for 2+1 topological states of matter

BF model in condensed matter

- Topological superconductors
 Diamantini, Sodano and Trugenberger, Phys. Rev. B82 2010.....
- Topological superconductors, Z₂ lattice gauge theory, U(1) lattice gauge theory with charge 2 Higgs, RVB state. Hansson, Oganesyan and Sondhi, Ann. of Phys. 2004

イロト イポト イヨト イヨト

 Topological insulators Cho and Moore, Ann. Phys. 2011

BF theory: Abelian case

BF theory is naturally T invariant in any dimension For 2+1 D case

$$S^{(2+1D)}_{BF} = rac{k}{2\pi}\int dx^lpha \epsilon^{\mu
u
ho}F_{\mu
u}B_
ho$$

with $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ with A_{ν} and B_{μ} gauge fields. For 3+1 D case

$$S^{(3+1D)}_{BF} = rac{k}{2\pi}\int dx^lpha \epsilon^{\mu
u
ho\eta}F_{\mu
u}B_{
ho\eta}$$

with $B_{
ho\eta}$ two-form gauge field

topological insulator Cho and Moore, Ann. Phys. 11

A. Blasi, A. Braggio, M. Carrega, D. Ferraro, N. Maggiore, N. BF theory for 2+1 topological states of matter

BF theory simmetries

In 2+1D for light-cone coordinates
$$z = \frac{t+x}{\sqrt{2}}$$
 $\bar{z} = \frac{t-x}{\sqrt{2}}$ $u = y$

$$S_{BF} = \frac{k}{\pi} \int du d^2 z \left[B \left(\bar{\partial} A_u - \partial_u \bar{A} \right) + \bar{B} \left(\partial_u A - \partial A_u \right) + B_u \left(\partial \bar{A} - \bar{\partial} A \right) \right]$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The BF action satisfy the two discrete symmetries Parity (P) $(u, z, A, A_u, B, B_u) \leftrightarrow (-u, \overline{z}, \overline{A}, -A_u, \overline{B}, -B_u)$ Time rev. (T) $(u, z, A, A_u, B, B_u) \leftrightarrow (u, -\overline{z}, -\overline{A}, A_u, \overline{B}, -B_u)$

So the gauge field can be interpreted A_{μ} charge density B_{μ} spin density

BF theory with boundary

The aim of this work is to present a detailed analysis of the 2+1 D BF Abelian and non-Abelian model in the presence of a boundary in the framework of Topological Quantum Field theories

We consider the axial gauge where ghost sector decouple

Boundary term must to be added to the action *to restore the total gauge invariance*. They have to satisfy the requirements:

- Locality
- Power counting
- Symanzik separability condition (i.e. propagators on the opposite sides of the boundary must vanish) Symanzik, NPB 81

<回> < 回> < 回> < 回> = □

Boundary terms

$$S_{BD} = \frac{k}{\pi} \int du d^2 z \delta(u) \left(\alpha_1 A \bar{A} + \alpha_2 A \bar{B} + \alpha_3 \bar{A} B + \alpha_4 B \bar{B} \right)$$

Boundary terms lead to to the *boundary conditions* on the gauge fields on one side

$$(1-\alpha_2)A-\alpha_4B = 0, \qquad (3)$$

$$\alpha_1 A - (1 - \alpha_3) B = 0 \tag{4}$$

$$(1+\alpha_3)\bar{A}+\alpha_4\bar{B} = 0 \tag{5}$$

$$\alpha_1 \bar{A} + (1 + \alpha_2) \bar{B} = 0.$$
 (6)

non trivial solution are obtained for $\alpha_3 = -\alpha_2$ (T symmetry) and

$$lpha_1 lpha_4 - (1 - lpha_2^2) = 0$$
 , is the set of the set o

A. Blasi, A. Braggio, M. Carrega, D. Ferraro, N. Maggiore, N.J. BF theory for 2+1 topological states of matter

Residual Ward identities

Axial gauge is not a complete gauge fixing, there is a residual gauge invariance expressed by a WI

$$\begin{aligned} &\frac{\pi}{k} \int du \, H[Z_c] \equiv \\ &-\frac{\pi}{k} \int du \left(\bar{\partial} j_{\bar{A}} + \partial j_A \right) = - \left[\alpha_1 \left(\bar{\partial} A_+ + \partial \bar{A}_+ \right) + \alpha_2 \left(\partial \bar{B}_+ - \bar{\partial} B_+ \right) \right] \\ &\frac{\pi}{k} \int du \, N[Z_c] \equiv \\ &-\frac{\pi}{k} \int du \left(\bar{\partial} j_{\bar{B}} + \partial j_B \right) = - \left[\alpha_2 \left(\bar{\partial} A_+ - \partial \bar{A}_+ \right) + \alpha_4 \left(\bar{\partial} B_+ + \partial \bar{B}_+ \right) \right] \end{aligned}$$

.

イロン 不同と 不同と 不同と

Conserved Kac-Moody chiral current

Introducing the fields

$$R \equiv (1 - \alpha_2) A + \alpha_4 B$$

$$S \equiv (\alpha_2 - 1) A_+ + \alpha_4 B$$

such that $\bar{R} = S = \bar{\partial}R = \partial\bar{S} = 0$ one can show they satisfy Kac-Moody algebra $([R(z), \bar{S}(\bar{z}')] = 0)$

$$\begin{bmatrix} R(z), R(z') \end{bmatrix} = \frac{2\pi\alpha_4(1-\alpha_2)}{k} \partial \delta(z-z')$$
$$\begin{bmatrix} \bar{S}(\bar{z}), \bar{S}(\bar{z}') \end{bmatrix} = \frac{2\pi\alpha_4(1-\alpha_2)}{k} \bar{\partial} \delta(\bar{z}-\bar{z}')$$

where R and \overline{S} have opposite chirality and they are connected by T symmetry

A. Blasi, A. Braggio, M. Carrega, D. Ferraro, N. Maggiore, N. BF theory for 2+1 topological states of matter

Non-Abelian BF theory

$$S_{BF} = \frac{k}{2\pi} \int dx^{\alpha} \varepsilon^{\mu\nu\rho} \left\{ F^{a}_{\mu\nu} B^{a}_{\rho} + \underbrace{\frac{\lambda}{3}}_{Cosmological \ term} B^{b}_{\nu} B^{c}_{\rho} \right\}$$

$$F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + f^{abc}A^{b}_{\mu}A^{c}_{\nu}$$
(8)

We have included the *Cosmological term* consistent with gauge invariance only in 2+1 D and one can limit the analysis to $\lambda = 1$ because by rescaling

$$egin{array}{lll} B^{a}_{\mu}
ightarrow rac{B^{a}_{\mu}}{\sqrt{\lambda}} & \Longrightarrow & \mathcal{S}_{BF}[k,\lambda]
ightarrow \mathcal{S}_{BF}[rac{k}{\sqrt{\lambda}},\lambda=1] \end{array}$$

The boundary terms are analogous to the Abelian case, a = 1, a = 1

A. Blasi, A. Braggio, M. Carrega, D. Ferraro, N. Maggiore, N.I BF theory for 2+1 topological states of matter

Kac-Moody algebras in the non-Abelian case

Proceeding in analogy with the Abelian case if we introduce the two linear combinations

$$R^a \equiv A^a + B^a$$
 $S^a \equiv -A^a + B^a$

that satisfy $S^a(z,\bar{z}) = \bar{R}^a(z,\bar{z}) = \bar{\partial}R^a(z,\bar{z}) = \partial\bar{S}^a(z,\bar{z}) = 0$ we recover two Kac-Moody algebra

$$\begin{bmatrix} R^{a}(z), R^{b}(z') \end{bmatrix} = f^{abc}\delta(z-z')R^{c}(z) + \frac{2\pi}{k}\delta^{ab}\delta'(z-z') \\ \begin{bmatrix} \bar{S}^{a}(\bar{z}), \bar{S}^{b}(\bar{z}') \end{bmatrix} = f^{abc}\delta(\bar{z}-\bar{z}')\bar{S}^{c}(\bar{z}) + \frac{2\pi}{k}\delta^{ab}\delta'(\bar{z}-\bar{z}')$$

which represent the non-Abelian generalization for the boundary currents

Maggiore & Provero, Helv. Phys. Acta 1992

A. Blasi, A. Braggio, M. Carrega, D. Ferraro, N. Maggiore, N.I BF theory for 2+1 topological states of matter

Chiral currents with opposite chirality

- In conclusion also for the non-Abelian case, at the boundary, there are two currents R^a and S^a propagating with opposite chirality and connected by T symmetry.
- ▶ The central charge of these currents are determined uniquely by the winding number k (and equivalently on the cosmological constant λ with the substitution $k \rightarrow k/\sqrt{\lambda}$ of the theory.
- In this perspective it is useful to compare the Abelian result discussed before with the non-Abelian result presented taking the limit f^{abc} → 0. A proper way is to develop the Abelian theory as a limit of the non-Abelian one.
- If the T symmetry is not required at the boundary other solutions are possible where only one chiral current is obtained one

Conclusion

- Abelian and non-Abelian theories appear good candidates as effective theories for topological insulators
- In general at the boundary we find edge states with opposite chiralities and Kac-moody algebras connected with T symmetry, consistently with the experimental observation of QSH.
- Fractional QSH state?
- Perspective: higher dimension 3+1 D topological insulators, spontaneous breaking of T symmetry at the boundary

イロト イポト イヨト イヨト