Anderson localization in quark-gluon plasma

Tamás G. Kovács with Ferenc Pittler

University of Pécs

September 9, 2011

Analogy: Dirac operator of QCD — random Hamiltonian

$T < T_c$

- Statistics of small Dirac eigenvalues: random matrix statistics (Verbaarschot, Shuryak,...)
 - Symmetries \Rightarrow Effective σ -model (Gasser & Leutwyler,...)
 - Lattice (numerical)

Analogy: Dirac operator of QCD — random Hamiltonian

$T < T_c$

- Statistics of small Dirac eigenvalues: random matrix statistics (Verbaarschot, Shuryak,...)
 - Symmetries \Rightarrow Effective σ -model (Gasser & Leutwyler,...)
 - Lattice (numerical)

$T > T_c$

- No analytic result available
- Is the Dirac op. a "random matrix"?

Introduction: the lattice Dirac operator

• ψ_i quark fields on lattice sites

•
$$U_i \in SU(N_c)$$
 ($N_c = 3$ in QCD)

- vector potential $\rightarrow U \approx e^{iA}$
- Ui's dynamical var's on links

Discretization

Derivative: $\partial_{\mu}\psi \rightarrow \frac{1}{a}(\psi_2 - \psi_1)$ Covariant derivative: $D_{\mu}\psi \rightarrow \frac{1}{a}(\psi_2 - U_1\psi_1)$ Gauge action: $\frac{1}{4}F_{\mu\nu}F^{\mu\nu} \rightarrow -\frac{1}{q^2}tr(U_1U_2U_3U_4)$

Long distance theory — Lorentz invariant QCD

Lattice Dirac operator

• Partition function (integrating out quarks):

$$Z = \int \mathscr{D} \psi \mathscr{D} \bar{\psi} \mathscr{D} U e^{-S_{g}[U] - \bar{\psi} \{D[U] + M\} \psi}$$

 $= \int \mathscr{D}U \, det \{ D[U] + M \} \cdot e^{-S_{g}[U]}$

- Statistical physics system (4-dimensional, Euclidean)
- Dynamical variables: $U_i \in SU(N_c)$ on lattice links
- Temperature: $T = \frac{1}{N_t a}$ (N_t : extension in Euclidean time)

Dirac operator: D[U]

- Discretized differential operator depending on U-s
- $(D[U] + M)^{-1}$ appears in physical quantities
- Small eigenvalues (eigenvectors) physically important

The structure of the Dirac operator

• Symmetries: $\{\gamma_5, D\} = 0$ $D^{\dagger} = -D$ $\Rightarrow D = \begin{pmatrix} 0 & iC \\ iC^{\dagger} & 0 \end{pmatrix}$

• \Rightarrow Spectrum imaginary, symmetric around 0

- probability distribution of $[U] \Rightarrow$ random D[U] with given distribution
- distribution of $D[U] \Rightarrow$ physical quantities
- eigenvalue ststistics of $D[U] \Rightarrow$ bulk termodynamics

What do we know about the spectral statistics of D[U]? Is the detailed dynamics important or it is already given by the symmetries?

lmλ

Reλ

Random matrix theory (RMT)

- $N \times N$ -es matrices ($N \gg 1$), iid. random elements
- Statistical properties of the spectrum are largely universal
- Depends on: certain symmetries of the matrices
- Within a given class, largely independent of:
 - Distribution of matrix elements
 - Detailed structure of the matrix (eg.: which elements vanish, etc.)
- Analytically calculable if matrix elements are Gaussian distributed
- No preferred basis \Rightarrow

typical eigenvectors "delocalized"

Example: chiral orthogonal ensemble

• Matrices of the form $\begin{pmatrix} 0 & iW \\ iW^{\dagger} & 0 \end{pmatrix}$ with $W \in \mathbb{R}^{n \times n}$

• W_{ij} distributed independently and uniformly in [-1,1]

Is the Dirac operator a "random matrix"?

- $\lambda = 0$ special point (symmetry).
- Transition at $T_c \approx 200 \text{MeV}$:

 $\rho(0) \neq 0 \Rightarrow$ statistics of low eigenvalues of D[U] described by random matrix theory analytically (σ -model) + numerically (lattice QCD)

Lattice simulation (this work)

TGK, PRL **104** (2010) 031601 TGK & F. Pittler, PRL **105** (2010) 192001 F. Bruckmann, TGK and S. Schierenberg, PRD **84** (2011) 034505 ← talk by S.S.

• Number of colors: $N_c = 2,3$ \Rightarrow gauge symmetry: SU(2), SU(3)

• $T = 2.6T_c$

- Various lattice spacings: $N_t = 4, 6, 8$ $(T = \frac{1}{aN_t})$
- Various spatial volumes: $N_s = 12 48$
- Different discretizations: overlap, staggered (similar results).
- "Quenched" (ignoring det(D+m)) and N_f = 2+1 dynamical (similar results)

Average "spatial size" of eigenvectors

based on participation ratio (staggered, $N_t = 4$)

Volume fill fraction of eigenvectors

Typical eigenvectors

higher up in the spectrum

volume fill fraction $\gg 1$

• Eigenmodes at the low end of the spectrum are localized in small subvolumes of $\approx d^3$.

• Avg. number of small modes per subvolume of $d^3 \ll 1$.

→ Modes sample different random gauge backgrounds
⇒ they are statistically independent.

• Is that reflected in the spectral statistics?

Unfolded level spacing distribution

• Level spacing:
$$\lambda_{n+1} - \lambda_n$$

• Unfolding: rescaling $s = \frac{\lambda_{n+1} - \lambda_n}{\langle \lambda_{n+1} - \lambda_n \rangle}$

- Two extreme possibilities:
 - λ_n statistically independent $\Rightarrow p(s) = \exp(-s)$
 - Eigenmodes mix maximally $\Rightarrow p(s)$ random matrix stat.

Statistics of Dirac eigenvalues above T_C SU(3), $N_f = 2 + 1$, staggered, $N_t = 4$ $N_s = 32$,

unfolded level spacing distribution p(s) $s = \frac{\lambda_{n+1} - \lambda_n}{\langle \lambda_{n+1} - \lambda_n \rangle}$

Statistics of Dirac eigenvalues above T_C SU(3), $N_f = 2+1$, staggered, $N_t = 4$ $N_s = 32$,

unfolded level spacing distribution $p(s) = \frac{\lambda_{n+1} - \lambda_n}{\langle \lambda_{n+1} - \lambda_n \rangle}$

Statistics of Dirac eigenvalues above T_C *SU*(3), $N_f = 2 + 1$, staggered, $N_t = 4$ $N_s = 32$,

Statistics of Dirac eigenvalues above T_C *SU*(3), $N_f = 2 + 1$, staggered, $N_t = 4$ $N_s = 32$,

Spectral statistics at $T > T_c$

Analogy: Anderson localization

Is the hadron \rightarrow quark-gluon plasma transition an Anderson transition? (Garcia-Garcia, Osborn, Phys. Rev. **D75**, 034503 2007)

Anderson localization in solid state physics:

- Perfect periodic crystal \rightarrow Delocalized electron states: bands
- Defects (disorder) \rightarrow 1-electron H-operator "random matrix".
- Strong disorder \rightarrow localized states appear at the band edge.

But! No on-site disorder. Disorder is in hopping terms (gauge field).

- Tune system to 2nd order phase transition
- $\xi \to \infty$ (in lattice units)
- Change physical lattice spacing *a* such that $\xi a = \text{const.}$
- Lattice spacing: $a \rightarrow 0$ since $\frac{1}{M_{phys}} \approx \xi a$
- Keep physical volume and temperature fixed.

$$\Rightarrow N_t, N_s \propto \frac{1}{a}$$

Continuum limit: level spacing distribution (unfolded) same physical volume and T, same physical location in the spectrum

Transition in the spectrum at the same physical point: $\lambda \approx 500 MeV$

Continuum limit: linear size of eigenmodes SU(2) quenched, overlap, $N_t = 4 - 10$, $T = 2.6T_c$

⇒ physical objects, not "dislocations"

- Poisson \rightarrow RMT transition in Dirac spectrum at $T > T_c$: generic feature of 4d non-Abelian gauge theories
- Density and linear size of localized modes scales
- What is their physical origin?
- Analogy to Anderson localization (Garcia-Garcia and Osborn, PRD 2007)
- Any measurable effects e.g. in heavy ion collisions?