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You can get much further with a kind word and
a gun than you can with a kind word alone
(Al Capone)

You can get much further with an insight from
experiment and mathematics than you can
with mathematics alone




Till 2004: a way to understand graphite, nanotubes,

fullerenes + theoretical interest
(Dirac point )

Do we theoreticians need experimentalists?! — Yes!!!
(Klein tunneling, supercritical charge, ripples, new wave
equation — bilayer, new type of transport...)

1. Applications (modern electronics is 2D, bulk is
ballast)

2. Prototype membrane (new drosophila for 2D
statistical mechanics)

3. CERN on the desk (mimic high energy physics)




sp? hybridization, m bands crossing
the neutrality point

Neglecting intervalley scattering:
massless Dirac fermions

FIG. 2: (color online) Band structure of a single graphene
layer. Solid red lines are o bands and dotted blue lines are m

B Symmetry protected (T and /)




Minimal conductivity problem and transport via
evanescent waves

Klein tunneling and inhomogeneities

Gauge pseudomagnetic fields and strain
engineering

Relativistic collapse for supercritical charges




Zzero-gap
semiconductor

RS

no femperature
dependence
in the peak
between 3 and 80K




At zero doping, zero temperature there 1s a finite
minimal conductivity approximately e*/h per channel

Two views: from the side of no disorder
and from the side of strong disorder

Amazing property of 2D massless
particles: finite conductivity for ideal
crystal — no scattering, no current

carriers!




Conductance = e’/h Tr T per valley per spin

1"1s the transmission probability matrix

The wave functions of massless
Dirac fermions at zero energy:

Boundary conditions determine the functions




S (y+Ly) =f(y) Edge states near the top and bottom of the sample

New type of electron transport: via evanescent
waves — different from both ballistic and diffusive




[Ceads irom doped' graphene
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The problem of “missing pi(e)” — may be, no problem




/\ transforms the region
to circular ring (Corbino
geometry)




Magnetic flux tube within the ring




Electronics: heterostructunes, (p-7-p) Junciions; €ic. )

cannot propagate through
potential barriers

can propagate (tunneling) but
probability decays exponentially with barrier
height and width

can propagate
with the probability ot order of unity (Klein
paradox)




Ultrarelativisic

Nonrelativistic




Transmission probability

Barrier width 100! 7z

Electron concentration
outside barrier 0.5x 102 cm>

Hole concentration
inside barrier 1x10'2 cm™

(red) and 3x10'> cm™? (blue)




Problem: graphene transistor:
can hardly be locked!

Possible solution: use
graphene:

Transmission for bilayer;
parameters are the same as for
previous slide




One-dimensional potential




Reduction to exact Schrodinger equations for complex
potential

Canonical operator, expansion in h plus comparison with exact
solution for linear potential




Fabry-Perot resonances

For nonsymmetric p-n-p junction
00% transmission — only at normal
Incidence




The angular dependence of the transmission coefficient for a particle of energy
80 meV incident on an n-p-n junction of height 200 meV. The barrier width
1, = 250 nm and the n-p and p-n regions have characteristic lengths 1y = 150 nm
and 13 = 50 nm, respectively. The blue line shows the numerical results for g9
steps, while the red line shows the uniform approximation (5.77).

Asymmetric barriers

U-lnax
5 [1 + tanh (




“Magic angles” with 100%
transmission always exist
o (numerics)
- .h 0 Interesting and important
5 theoretical problem (no obvious
conservation law, etc.)

} 0
The angular dependence of the transmission coefficient for a particle of energy 17
meV incident on symmetric and asymmetric n-p-n junctions in bilayer graphene.
Each junction has a height of 50 meV and a width 1, = 100 nm. The blue line
shows the numerical result for a symmetric junction with 1} = l3 = 10 nm,

‘hile the red line shows an asymmetric junction with 1y = 20 nm and 13 =40
nm. All calculations were done with g9 steps per junction.



week ending

PRL 102, 026807 (2009) PHYSICAL REVIEW LETTERS 16 JANUARY 2009

Evidence for Klein Tunneling in Graphene p-r Junctions

N. Stander, B. Huard, and D. Goldhaber-Gordon™

Department of Physics, Stanford University, Stanford, California 94305, USA
(Received 13 June 2008; published 16 January 2009)

Transport through potential barriers in graphene is investigated using a set of metallic gates capacitively
coupled to graphene to modulate the potential landscape. When a gate-induced potential step is steep
enough, disorder becomes less important and the resistance across the step is in quantitative agreement
with predictions of Klein tunneling of Dirac fermions up to a small correction. We also perform
magnetoresistance measurements at low magnetic fields and compare them to recent predictions.

nzgure. LETTERS
p ySICS PUBLISHED ONLINE: 1 FEBRUARY 20091 DOI: 10.1038/NPHYS1198

Quantum interference and Klein tunnelling in
graphene heterojunctions

Andrea F. Young and Philip Kim*

‘N\
&

:

1 2 3 4 1 2 3 4
[ny| (10" cm™2)




Back scattering 1s
iorbidden: tor chiral
termions! Magic angle =0
Nonuniversal magic angle
lior bilayer exists!

Electrons cannot be locked by random potential
relief neither for single-layer nor for bilayer
graphene — absence of localization and minimal
conductivity?!







Freely suspended graphene
membrane Is corrugated

2D crystals in' 3D space cannot be

flat, due to bending Instability

Atomistic simulations of
Intrinsic ripples




RT: tendency

to formation of
single and double
bonds instead of
equivalent
conjugated bonds

Bending for
“‘chemical” reasons




Nearest-neighbour approximation: changes of
hopping integrals

H = vpo (—mv — ;A)

K and K’ points are shifted
in opposite directions;
Umklapp processes
restore time-reversal
symmetry




FIG. 4. (Color online) Top panel: fully sell-consistent electronic
density profile Sn(r) (in units of 10" ¢m™) in a corrugated
graphene sheet. The data reported in this figure have been obtained
by selting g;=3 eV, a.=0.9 (this value of a.. is the commonly
used value for a graphene sheet on a SiO, substrate), and an average
carrier density i,=0.8 X 10'> ¢cm™. Bottom panel: same as in the
top panel but for a..=2.2 (this value of a.. corresponds to sus-
pended graphene).

z (nm)

FIG. 9. (Color online) One-dimensional plots of the
self-consistent density profiles (as functions of x in nm
for  y=21.1 nm) for different values of  doping:
n.=0.8X 102 ecm™ (circles), n.=3.96 X 102 cm™ (triangles),
and n,=3.17X 101 cm™ (squares). The data reported in this fig-
ure have been obtained by setting g;=3 eV and a..=2.2. The inset
shows én(r) (in units of 10> ¢cm™2) at a given point r in space as a
function of the average carrier density i, (in units of 102 cm™).
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A TREATISE

ELECTRICITY ANIr MAGNETISM

i
JANES CLERK MAXWELL, N.A,
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Electromagnetic fields as deformations
In ether; gears and wheels




Within elasticity theory (continuum limit)

Pseudomagnetic
field




Three-fold et
symmetry ISl 3

With normal forces only

r0)=




Graphene: deformations up to 25%; at 10% pseudomagnetic
fields of order 10-20 T. Can be a bit inhomogeneous

Normal stress applied to three

edges, size 1.4 ym DOS in the center (0.5 um)




Strain-Induced Pseudo—Magnetic

Fields Greater Than 300 Tesla in 55 ;v 2010 vOL 329 SCIENCE
Graphene Nanobubbles

N. Levy,"?*t+ S. A. Burke,**t K. L. Meaker,* M. Panlasigui,* A. Zettl,* F. Guinea,?
A. H. Castro Neto,* M. F. Crommie™*§
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Fig. 2. (A) Sequence of eight difdV spectra (T ~ 7.5 K, Vieq =
20 mV) taken in a line across a graphene nanobubble shown in
the image in (B). Red lines are data with quartic background
subtracted; black dotted lines are Lorentzian peak fits (center of
peaks indicated by dots, with blue dots indicating n = 0).
Vertical dash-dot lines follow the energy progression of each
peak order. (C) Normalized peak energy versus 5gn(n)\_/m for
peaks observed on five different nanobubbles follow expected
scaling behavior from Eq. 1 (dashed line).

STM observation of pseudo-Landau
Graphene on Pt(111) levels
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combination of vector and
scalar potential leads to gap
opening
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Coulomb potential

Naive arguments: Radius of atom R,
momentum h/R. case:
E(R) ~ h? /mR? - Ze?/R
Minimum gives a size of atom.

case: E(R) ~ hc*/R — Ze“/R
Either no bound state or fall on the center.

Z>170




SIVOEIRalSENAAN | Domeranchuk and Y. Smorodinsky, J. Phys. USSR 9, 97
nuclei

Graphene:
v = ¢/300, K

~ ‘I FIG. 1: a) Energy levels of superheavy atoms obtained from
Dirac equation for Coulomb potential —Ze? /7, plotted as a
function of ¢ = Za, where Z is nuclear charge, and o = e* /hc
is the fine structure constant. Energy is in the units of mc?.
(b) Energy levels for Coulomb potential regularized on the
nuclear radius. As Z increases, the discrete levels approach
the continuum of negative-energy states and dive into it one
by one at supercritical Z > 170 (from Ref.[23]).

o

23 Y. B. Zeldovich and V. S. Popov, Usp. Fiz. Nauk 105, 403



B = Zec/hve > 1z

Relativistic

5 fall-down
M<Ze"/c

Supercritical | Supercritical
B<—1/2 B>1/2

Quasi-local states




LDOS correction Ov(g)

Interference of scattered wave and wave

described electron fall to the centre leads to
oscillations of electron density

— p=0.6
— p=0.38
— p=1.0
— p=12

p=14
— p=1.6

Total LDOS
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Inset:

oscillations
for different
charges
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Total LDOS

A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, Phys.
Rev. Lett. 99, 236801 (2007), arXiv:0705.4663

A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, Phys.
Rev. Lett. 99, 246802 (2007), arxiv.org:0708.0837

B=-0.4
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FIG. 3: (a) Local density of states (12) calculated at a fixed
distance p = 10%ro from the charged impurity, where 7o is a
short-distance parameter of the order of carbon lattice spacing
(from Ref.[10]). Peaks in the LDOS, which appear at super-
critical 3 and move to more negative energies at increasing
|3], correspond to the resonant states. (b) Spatial map of
the density of states, shown for several values of 3, with res-
onances marked by white arrows (from Ref.[11]). Note that
the spatial width of the resonances decreases at they move
to lower energies, Ap  1/|e|, while the linewidth increases,
v  |e|. The oscillatory structure at positive energies repre-
sents standing waves with maxima at kp ~ (n + )7, similar
to those studied in carbon nanotubes [26]. Energy is given in
the units of e = 1072hv/ro ~ 30mV for ro = 0.2 nm.
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Dimensional analysis: induced charge density in undoped graphene
n(r) = Ad(r) + B/r

If B is not zero: logarithmically divergent induces

charge and “nullification” of Coulomb potential —
predicted by Thomas —Fermi theory

Linear screening theory: constant dielectric
function, screening charge focused at the
coordinate origin (only first term)




. N sign 3
’n'p(:)l(p ) — W Z

m+3|<|B

N = 4 (two valleys, two spins)

Large (B: replacing the sum by an integral
recover the Thomas-Fermi result

RG analysis:
with a finite screening radius (similar
to black hole horizon)




e New type of transport in solids:
quantum relativistic transport via
evanscent waves

¢ Klein tunneling — a key phenomenon
for graphene physics and

applications

e Gauge fields are real mechanical
fields, one can manipulate them

e Vacuum reconstruction? QED with
strong interaction
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