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• A new viewpoint on the Laughlin State leads to a 
quantitative description of incompressibility in the 
FQHE 

• A marriage of Chern-Simons topological  field theory 
with “quantum geometry”
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Geometry of the Fractional QHE
• For at least 20 years, 

most “theoretical” 
work (as opposed to 
numerical simulation) 
has been “topological” 
in character.

• Finite-size exact 
diagonalization (up to 
20 particles) confirms 
that microscopic 
Hamiltonians exhibit 
incompressibility
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Topological Quantum Field Theory

• (Abelian) Chern-Simons theory

• Choose gauge aI0 = 0
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KIJ is an integer topological matrix, tI is an integer vector

• Topological degeneracy on a 
2-manifold of genus g | detK|g

Thursday, September 8, 11



Topological quantum field theory
• The TQFT description of  FQHE assumes the existence of 

incompressibility.  

• It can classify the different types of topological excitations, 
and what happens when external agents move them 
around  braided paths or and selection rules for fusing 
them.

• .TQFT models the systems with a Lagrangian that is linear 
in time-derivatives.

• The weak point of TQFT follows from this:

The Hamiltonian has the simple form:

H = 0
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• TQFT is a fundamentally incomplete 
description of the FQHE

• It does not even know about the 
fundamental magnetic area 

• It does not describe the relative energies of 
the point-like topological excitations it 
classifies, just their electric charge and 
mutual statistics.
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Origin of incompressibility?

• Ginzburg-Landau Chern-Simons theory suggests that it 
could be explained by a theory where CS flux is 
“attached” to Galilean-invariant non-relativistic 
particles with mass m.   

• The composite fermion (CF) idea (Jain) says it arises 
because composite fermions fill “effective Landau 
levels”. “Effective Hamiltonian Theory” (Shankar and 
Murthy) tries to implement this with an uncontrolled  
Ansatz.

Various “narratives” have been developed

CF method produces model wavefunctions for 2/5, 2/7, .. . series of FQHE states that 
can be used as successful variational states with numerically-evaluated energies, but 
provides no analytic insight.
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• These approaches have not been based on 
microscopic analysis, and attempt to solve 
the problem by appealing to superficially-
plausible analogies

• Dimensional analysis suggests gaps must be 
related to 

We may hope for something more quantitative 

The “narratives” appear to be “conforting make-believe stories” 
that reassure  us  we have some understanding, even if it is non-

quantitative?
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• The clue to a quantitative approach is 
provided by seminal work of  Girvin 
MacDonald and Platzman (1985)

• It was never properly interpreted and 
followed up, but turns out to be the only 
source of correct physics on which a 
microscopic picture can be based

• The new results presented here can be 
viewed as a translation of GMP into a 
“geometric field theory”
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GMP:

• The one step missed by GMP (regularization)
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Fundamental Lie algebra
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Landau level filling
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• regularized generator of translations

h0|�⇢(q)|0i = 0

Pa = ~
`2B

lim�!0 ��1✏abrb
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[Pa, Pb] = i✏ab
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`2B
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Components commute
after regularization!
(this solves a fundamental problem in taking 
the thermodynamic limit of the FQHE)

Pa|0i = 0
Translationally-invariant vacuum state

h0|�⇢(q)�⇢(q0)|0i = 2⇡S(q)�2(q`B � q0`B)

Guiding-center structure function: the importance of 
this correlation function is central to the theory of 

FQHE incompressibility
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• correlation energy per magnetic area
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• S(q) is the ground-state structure factor, which 
describes the zero-point fluctuations of the Ri

•  make an area-preserving shear deformation of the 
ground state, i.e., of S(q); the energy increase will be 
quadratic in the deformation
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• Motivated by Feynman’s theory of the roton 
in 4He, GMP used the single-mode 
approximation as a variational ansatz for the 
collective excitation:
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•  GMP did not interpret A(q), but 
evaluated it numerically, using the 
Laughlin state S(q) obtained by 
Monte Carlo methods.

in fact
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• In the long wavelength limit, the GMP result 
can be written as

• This turns out to be an equality for systems with 
a single collective mode (single-component FQHE 
states, as well as Wigner-lattice states with one 
electron per unit cell)

• As GMP recognized, if the collective mode is 
gapped (i.e., the state is incompressible), S(q) must 
be quartic at long wavelengths.   This was  their 
fundamental insight into FQHE incompressibility.
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• From this we learn that the fundamental stiffness 
of the incompressible FQHE states is the their 
resistance to area-preserving distortions that 
changes the shape of the correlation hole 
around a guiding center from the shape that 
minimizes the energy.

• The collective degrees of freedom can be 
described as one (or more)  UNIMODULAR 
positive definite real-symmetric spatial metric 
tensor fields 

As a quadratic form, this describes a 
local “shape of a circle”
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• Physically, it is the shape of the “attached 
flux” of the “composite bosons” that 
condense if the Chern-Simons “flux 
attachment picture:

e

region with 3 flux quanta 
surrounding the electron.   

Other electrons are 
excluded from this region 

(analogy is a Hubbard model 
lattice site)

e

at 1/3 filling, an electron with
3 “attached” flux quanta

behaves like a neutral boson

area-preserving
shape deformation of 
the exclusion region 

costs correlation 
energy
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• The metric has non-commuting elements 
that fluctuate around a value

• Charge fluctuations associated with this 
metric are given by

elementary fractional 
charge e/q

a “guiding-center spin”
(2s = integer, topologically-

quantized by Gauss-Bonnet in 
incompressible states)

Gaussian curvature

This is why S(q) ~ q4
(Brioschi formula)
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• A 2+1-d space-time metric is given by

• There is nothing that propagates on the Hall 
surface with speed c, and there is no Lorentz 
symmetry.    Absolute simultaneity 
(unretarded Coulomb interaction) is allowed 
in the non-relativisic model.
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• Wen and Zee (1992) provided the 
infrastructure necessary to construct the 
extension to the topological Lagrangian 
when they described coupling to the 
extrinsically-derived curvature of an 
embedded surface on which the electrons 
move

• In their case, the embedded surface in 3D 
Euclidean space and its normal are
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• Wen and Zee extended (Abelian) CS theory: 

Coupling to 
curvature is a 
quantized spin

“spin connection”

curvature gauge field

Gaussian curvature
current (conserved)
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• Wen and Zee treated the metric induced on the 
surface by the flat 3D Euclidean metric of the space in 
which the surface was embedded, with a local SO(2) 
isotropy of rotations around the normal.

• They though the  (2D orbital “spin” was only 
meaningful if this rotational invariance was broken and 
the new features  were only of formal interest for 
compactification of FQHE on a sphere (“shifts”, etc.), 
and would not survive disorder.     This turns out to 
be false: “Spin”  is quantuzed here by Gauss-Bonnet 
(topological), not dependent on rotational invariance
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• In the new interpretation, the metric(s) are 
tensor fields describing the shape 
fluctuations of the Composite 
bosons.  

• The physical (embedded) surface is flat.   
(atomically clean surfaces like graphene or 
eptaxially grown surfaces strongly resist 
Gaussian curvature of their physical shape).
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• Happily, Gaussian curvature formulas are 
intrinsic, and do not depend on the physical 
origin of the metric.

One metric and its spin 
vector for each 

independent “composite 
boson” in the 

multicomponent case.

At last!
a Hamiltonian!
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• The Hamiltonian

+ 1
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correlation energy

quadratic in local
curvatures

long-range unretarded Coulomb
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• charge e/q quasiparticles are rational cone 
singularities of guiding-center metric field

Gaussian curvaturecharge

e⇤ = ±e

q

• competition between u(g) and V(r,r’) will 
smooth out point singularity at “tip” of “cone”

• u(g)

• V(r,r’)

geometry-dependent correlation-energy

Coulomb interaction potential

K = ±4�

2s̄
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• This seems to reproduce all the basic 
phenomenology of incompressibility:

• For single CS field model (Laughlin-type),  the 
Girvin-MacDonald-Platzman collective mode 
spectrum is reproduced at long wavelengths

• The Hall viscosity and  Q4  long wavelength 
behavior of the guiding-center structure factor 
S(Q) are reproduced

• quasiparticles/holes  are rational cone singularities 
of the metric field

• Effective theory will allow calculation of the 
energies of different types of topological 
excitations in terms of its parameters
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• electrons moving on a 2D surface with a magnetic 
flux density passing through it

cyclotron
effective mass m

inverse of “unimodular”
Galileian metric 

determines shape of 
Landau orbit
det g = 1

H =
X

i

1

2m
gab�ia�ib +

1

A

X

q

V (q)
X

i<j

eiq·(ri�rj)

Fourier transform of
two-body Coulomb 
interaction

�ia = pia � eAa(ri)

V (q)

�ab⇥aAb(r) = B

periodic boundary conditions
on a region with area A

Back to “square one”: rexamine the description of the FQHE
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• what physical properties define a 2D spatial metric gab 

in this problem?

• a “UNIMODULAR metric” means detg = 1.

• a unimodular metric defines the “shape of a circle” 
gabrarb  = const..

• Two distinct physical definitions of “the circle”:
• The shape of the Landau orbit is defined by the unimodular 

“Galileian metric” (the effective mass tensor is proportional to it)

• The shape of Coulomb equipotentials around a point 
charge is defined by the unimodular “Coulomb metric”.

+
Landau 
orbit

Coulomb 
equipotentials
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• Most work on the fractional Hall effect implicitly assumes that the 
“circles” defined by the Coulomb point charge equipotentials and 
the Landau orbits are congruent

• There is NO general reason for this to be true, one derives from 
the 3D dielectric tensor, the other from 2D bandstructure.

My claim:  the “simplification” of  treating the 
Coulomb and Galileian metrics as identical (which 
gives the system rotational invariance) has hidden a 
fundamental geometric property of the FQHE 
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decomposition into “guiding 
centers” and dynamical momenta

• Non-commutative geometry of guiding centers!

2D Landau 
orbitsx

�a = pa � eAa(r) = mabv
b

dynamical momentum 
in a magnetic field

ra = Ra + �ra

R

eB�ra = ⇥ab⇤b

mab�r
a�rb = const.

e�

“guiding center” 

[Ra, Rb] = �i⇥2B�
ab

mab = mgab

[�a, R
b] = 0
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High-field limit
~�B ⌘ ~

m⇥2B
� 1

A

X

q

V (q)f(q)2

Landau energy form-factor of lowest
Landau level 
(depends on Galileian metric)

f(q) = exp� 1
4g

abqaqb�2B

“left-handed” “right-handed”⇡ R

[Ra, Rb] = �i�ab⇥2B[⇥a,⇥b] = i�ab
~2

�2B

[�a, R
b] = 0

act in Hilbert space HL act in Hilbert space HR |�⇤ ⇥ |�L
0 (g)⇤ � |�R

� ⇤

• in the high-field limit, the low-energy eigenstates of H 
become unentangled products of  states in“left” 
and “right” Hilbert spaces

2
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• “Left variable” state is a trivial fully-symmetric 
coherent harmonic oscillator state that depends 
only on the Galilean metric

|�L
0 (g)⇥ � |�R

� ⇥

ai(g)|�L
0 (g)� = 0, i = 1, . . . , N

• “Right variable” state is a non-trivial eigenstate of

HR =
1

2A

X

q

V (q)f(q)2�q��q �q =
NX

i=1

eiq·Ri

[�q, �q0 ] = 2i sin( 12q ⇥ q0⇥2B)�q+q0
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Quantum geometry

• Discard the trivial “left variables”, and work only in 
the Hilbert space of the “right variables” (guiding 
centers).  This makes numerical diagonalization 
tractable for finite N, NΦ .

•Without the “left variables”, the notion of 
locality needed by classical geometry, and 
Schrödinger’s formulation of quantum 
mechanics is lost!

(the “triple” in Alain Connes definition of quantum geometry)
( Algebra A, Hilbert space H,Hamiltonian H � A)
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• Wavefunctions are only possible after 
“left” and “right”  states are “glued” back 
together! 

basis of simultaneous
eigenstates of
the commuting set of 
operators ri

Galileian
metric

Galileian
metric

wavefunction

This is where 
the guiding 

center physics 
is!

��({ri}, g) = ⇥{ri}|�L
0 (g)⇤ � |�R

� ⇤
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• The wavefunction depends on the Galilean 
metric gab in addition to |ΨRα〉 

• This means it is not a “pure” 
representation of |ΨRα〉 because it 
involves extraneous elements!

• The “pure” FQHE physics should only derive 
from guiding center physics

HR =
1

2A

X

q

V (q)f(q)2�q��q �q =
NX

i=1

eiq·Ri

[�q, �q0 ] = 2i sin( 12q ⇥ q0⇥2B)�q+q0 (+ Hilbert space )
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• But.... a great part of successful FQHE theory is 
based on wavefunctions!  (e.g. Laughlin)

�({ri}) = F ({zi})
Y

i

e�
1
2z

⇤
i zi

holomorphic
zi =

�a(g)raip
2⇥B

The definition of zi depends 
on the Galileian metric

ai =
1
2zi +

�
�z⇤

i

aj�({ri}) = 0, j = 1, . . . , N

(lowest Landau level condition)
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• It was initially proposed as a “trial wavefunction” 
with no continuously-variable variational 
parameters that achieved a much lower energy 
than Hartree-Fock approximations (“keeps 
particles apart better”)

• The Laughlin wavefunction has q zeros as a 
function of zi at each other coordinate zj.  Is this 
its defining property? (This was used when 
generalizing Laughlin to the torus (pbc)).

F q
L({zi}) =

Y

i<j

(zi � zj)
q

Laughlin wavefunction
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• I just argued that holomorphic wavefunctions were not 
“faithful” representations of quantum-geometric guiding-
center states because they involve the Galileian metric

• Another definition of Laughlin state follows from 
“Haldane pseudopotentials”.  At filling 1/q, it is the only 
zero-energy eigenstate of:

HR(g) =
q�1X

m=0

VmPm(g), Vm > 0

Pm(g) =
1

2N�

X

q

Lm(q2g⇥
2
B)e

� 1
2q

2
g⇥

2
B�q��q

Laguerre polynomial q2g = gabqaqb

(inverse) metric

Text
e� e�

Pm(g) projects on pairs of 
guiding centers with relative  
angular momentum m

argument depends on a metric!
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• This defines a family of Laughlin states 
parametrized by a unimodular “guiding 
center metric” ḡab

• The guiding center metric parametrizes an elliptic 
deformation of the shape of the “correlation hole” 
surrounding the electrons relative to the “circular” 
shape of the Landau orbits.

• The guiding center metric is NOT fixed by any one-
particle physics, but should be viewed as a true 
variational parameter that is chosen to minimize the 
correlation energy!

note the bar above g

Pm(ḡ)|�q
L�(ḡ)⇥ = 0, m = 0, 1, . . . , q � 1.
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• If the Coulomb and Galileian metrics 
coincide, the correlation energy is lowest 
when the guiding-center metric (as a 
variational parameter) is equal to them both

• If they are not equal, the energy is minimized 
by choosing the guiding center metric 
intermediate between them.

HR =
1

2A

X

q

V (q)f(q)2�q��q

depends on 
Coulomb metric

depends on 
Galileian metric
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• While TQFT can classify different “vortices” by 
electric charge and braiding statistics, it cannot say 
what their relative energies are, or how the 
process of fusion of two vortices proceeds.

• Till now, there has been no viable analytically 
tractable effective theory that can “explain” the 
origin of incompressibility, and its properties.

• Heuristic ideas include:

• Analogy with superfluids (Ginzburg-Landau
+Chern Simons)

• Composite fermions fill “Landau levels” in 
analogy with the integer effect, where the 
Pauli principle explains incompressibility

• Unfortunately, these are “narratives” rather than 
tractable effective theories.
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The Laughlin state: two different interpretations

• The wavefunction:

 L =
Y

i<j

(zi � zj)
q
Y

i

e�
1
2 ziz

⇤
i

a†i =
1
2z

⇤
i � @

@zi

ai =
1
2zi +

@

@z⇤i

ai L = 0

Landau-orbit raising operator

Landau-orbit lowering operator

lowest-Landau-level condition
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• The narrative explanation of its success

 L =
Y

i<j

(zi � zj)
q
Y

i

e�
1
2 ziz

⇤
i

“The Laughlin state places q zeroes of the wavefunction 
as a function of any zi at the locations of every other 
particle.  This keeps the particles apart, so lowers the 
correlation energy.”  
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The quantitative explanation

• introduce guiding center operators

ā†i =
1
2 z̄

⇤
i � @

@z̄i

āi =
1
2 z̄i +

@

@z̄⇤i

a†i =
1
2z

⇤
i � @

@zi

ai =
1
2zi +

@

@z⇤i
Guiding centers Landau orbits

Conventional choice:  z̄i = z⇤i
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• The Laughlin state can be rewritten as

 L =
Y

i<j

⇣
ā†i � ā†j

⌘q
 0

ai 0 = 0 āi 0 = 0

 0 =
Y

i

e�
1
2 ziz̄i

• If , for any i,j this state is expanded in eigenstates of 
relative guiding-center angular momentum

Lij =
1
2 (ā

†
i � ā†j)(āi � āj) = 0, 1, 2, . . .

No pair of particles has Lij < q
This is a fundamentally “Heisenberg” description of the Laughlin 
state formulated completely in terms of guiding-center physics, 
unlike the previous “Schrodinger” one
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• The guiding center geometry is fixed by the 
geometry of Coulomb equipotentials of a 
point charge, which do not have to be 
congruent to the shape of the Landau orbits

• The second (but not the original) definition 
of the Laughlin state remains valid if

z̄ does not have to be z⇤ !

✓
z̄
z̄⇤

◆
=

✓
↵ �
�⇤ ↵⇤

◆✓
z⇤

z

◆

↵⇤↵� �⇤� = 1

(Bogoliubov SU(1,1) transformation)
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Physically

e-

shape of the 
Landau orbit

Shape of the “excluded region”of 
q flux quanta surrounding each 
electron

|z| = constant |z̄| = constant

The shape of the excluded region will self-select 
to minimize the correlation energy, but can 
fluctuate about that shape
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The quantum geometry
• The shape       = constant is defined by a 

UNIMODULAR 2D spatial metric 
|z̄|

ḡab(r, t), det ḡ = 1

• Its Gaussian curvature is the curl of a DYNAMICAL spin-
connection gauge field analogous to the STATIC spin-
connection described by Wen and Zee (1992) in their 
treatment of FQHE on a static extrinsically-curved 
surface (like the sphere used in numerical diagonalization)

• Here the surface is flat, the curved metric is NOT the 
induced metric from 3D Euclidean space, as in Wen and 
Zee
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• The filling factor p/q and the elementary 
fractional charge e* = e/q are joined by a 
third topological parameter, the GUIDING 
CENTER SPIN, s, which is quantized to 
integer or half-integer in an incompressible 
state by Gauss-Bonnet.

• Charge density 

Some key results

⇢e(r) = �HB(r) +
e⇤s

2⇡
Kg(r)

Gaussian curvature of gab(r)
�H =

pe2

qh

Thursday, September 8, 11



• leading term in Gaussian curvature is second 
derivative of metric.    The zero-point 
fluctuations of the metric  naturally 
reproduces the k^4 behavior of the 
structure function at long-wavelength found 
by Girvin MacDonald and Platzman.

• The long-wavelength energy gap agrees 
quantitatively with GMP, in terms of the 
deformation stiffness of the state.

• quasiparticles are “cone singularities” of the 
metric field with rational quantized 
curvature in units 2⇡/s
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• Core structures of quasi particles are 
calculable in terms of the shape-dependent 
correlation energy and the effective 
interaction between charge fluctuations 
(Gaussian curvature fluctuations).

• The multicomponent case seems to have an 
independent metric field for each 
component

Conclusion: the effective theory of 
FQHE is finally revealed as a marriage 
of Chern-Simons topology with (2D 
spatial) quantum geometry.
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