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Graphene

Castro Neto, Guinea, Peres, Physics World
(Nov 2006)

@ Two dimensional crystal

@ One of the strongest materials ever
measured: Young modulus of TPa

® Yet, corrugations (and 3D structure
in general) ubiquitous

@ [t supports large values of strain
(20%)

@ Interplay of electronics and
structure!



Substrate induced curvature

1o SO, substrate
0 Graphene/SiO,
1.09 = Mica substrate
B Graphene/mica

AFM experiments:
Ripples correlate with
substrate morphology
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Lui et al. , Nature 462 339 (2009)
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Bubbles and wrinkles

“Observation of Graphene Bubbles and
Effective Mass Transport under Graphene
Films” Stolyarova et al. , Nanolett.. 9 332
(2009).

“Scanning Tunneling Microscopy
Characterization of the Electrical
Properties of Wrinkles in Exfoliated
Graphene Monolayers”, Xu et al. ,
Nanolett. 9 4446 (2009)



Controlling strain

Ap =-93 kPa
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“Controlled ripple texturing of
suspended graphene and ultrathin graphite

membranes” Bao et al. , Nat. Nanotech. 4 _ Length (um)
562 (2009) “Impermeable atomic membranes from graphene
sheets” Scott Bunch et al., Nanolett. 8, 2458 (2008)

@ “Introducing Nonuniform Strain to Graphene Using Dielectric Nanopillars”
(cond-mat/1106.1507 Tomori et al.)

@ “Graphene bubbles with controllable curvature” (Cond-mat/1108.1701, Manchester group )

@ “Topological properties of artificial graphene assembled by atom manipulation”, where they
produced atomically engineered strains. (Manoharan group, APS 2011)

@ And the list goes on...



Klectrons in: graphene

Tight binding band structure:

@ Nearest neighbour hopping: t ~2.7 eV H=—t Z a-;-rbj + cc.
@ Two atoms per unit cell <ij>
@ 2x2 Hamiltonian




Strain and' gauge fields

3 0 €—i(f?+q)+cﬂ1 -Guinea, Horowitz, Le Doussal,
H = — t 4+ ot . L Phys. Rev. B 77, 205421 (2008)
+ 0ty — ; .
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n=1 Phys. Rep. 496, 109-148 (2010)
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A general strain tensor




Strain induced magnetic fields

@ These are physically real pseudo-magnetic fields!

@ But time-reversal is preserved because the
two valleys have opposite magnetic fields

@ They inherit the trigonal symmetry of the lattice!
@ Morpurgo, & Guinea, “Intervalley scattering, long-range disorder, and effective time reversal symmetry
breaking in graphene”.. Phys. Rev. Lett. 97, 196804 (2006).

@ Guinea, Katsnelson, Geim, “Energy gaps, topological insulator state and zero-field quantum Hall effect
in graphene by strain engineering”. Nature Phys. 6, 30-33 (2010).

“We believe that the suggested strategies to observe the pseudo-Landau gaps and QHE are completely
attainable and will be realized sooner rather than later”
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Strain-Induced Pseudo—Magnet

Fields Greater Than 300 Tesla

Graphene Nanobubbles

et al.
Science 329, 544 (2010);
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Direct evidence of gauge fields Il

“Observation of Landau level-like quantizations at 77 K along a
strained-induced graphene ridge” He et al. , cond-mat/1108.1016 (2011)

10.6 nm

0 nm

d//dV (a.u.)

See also: “Strain-induced pseudo-magnetic fields
and charging effects on CVD-grown graphene”
Yeh et al. Surf. Sci. 605, 1649 (2010)




Aharonov-Bohm interferences

|'?.+"ilf’|2 x |€ikd1 4+ ez’kd2|2

x 1+ coa(k(dl — dg))

Add magnetic flux
I Solenoid I through the solenoid:

x 1+ cos(k(dy — ds) + o)

@ Probability of measuring an electron in B depends on
magnetic flux through the region enclosed by the path



Quantum interference in the LLDOS

“Aharonov Bohm oscillations in the local
density of states” A. Cano and |. Paul, Phys.
Rev. B 80 153401 (2009)

@ Same AB physics in the LDOS

@ Impurity scattering sets the path

@ Semiclassical approximation

9 .
N(r,w) = —=Im G*(r,r;w) required

T

G(r,r) =Gy(r.r)+ /dr’GO(r,r")U(r’)GO(r",r) + ...

/ A(l ) Goo(r — 1)

Go(r —r') = exp (



Quantum interference in the LLDOS

2
\Y
L Vreturn

U,

. Multiple scattering from the same impurity
1 — L"UGU(U) 1s resummed in the T-matrix.

{/'TU o {,‘T —

0G1pop(r.T) = W2Go(r —r)Go(r] —ry)Go(ry — 1)

[72 Multiple back and forth processes in
W = il the loop contribution are resummed
ATTQ il p
1 = U§Go(ry —r2)Go(ra —=T1)  in an analog function W.




Add' a magnetic field

Imp 2 .

Na=0 = Nreturn + i'?\'rioop

/"

l A magnetic flux will
modify the loop terms: q \
it

N = f\rreturn + j\rﬁc}{}p COS((IT[])

5GP () = U2 |Gt m)Golr. 1) Go(rr e

+ Go(r,rz)Go(fzarl)Go(l‘lal‘)e_iz_”-l

5G(2J(ral‘)= Ui:)2 {GO(I‘,I‘l)Go(l‘lal‘z)Go(l‘zal‘ﬂCOS?}

N(w,r) = Na—o(w.7) + Nigop(w, 1) [005(




Dirac fermions and interference

- Dirac fermions have a matrix Green's function

1w o(r;—r;)

Go(r.1i0) = —— [Ho(@h’l —1;|)+1

4 VF

H,(w|r, —1'2|)}

[r; — 13|

- The previous manipulations require to commute them: non trivial.
But all commutators proportional to 6, and vanish after the trace

(note this 1s spoiled for gapped graphene!).

- Valley degree of freedom: very short range impurities may induce
intervalley scattering. Pick longer ranged ones.

N(w,r) = Na—o(w.7) + Nigop(w, 1) [005(




An experimental proposal

- In the flat sample, the STM tip measures the usual standing wave patterns.



Induce controlled strain




Strain-induced interference

Magnetic field LDOS

® Circular perturbation 5

- In the curved sample, and after substraction of N . we see a new standing

wave pattern (Nloop) modulated by the cosine of the flux through the triangle.

ﬁi}g)) B 1]

Nigop(w, 1) [co:%(



Strain-induced interference

® Circular perturbation

@ Three-fold symmetric
perturbation

U, = uprsin30
Uy = UyT” COS30
Uy = (T/l()()/O'z) eXp(—Tz/ZO'z)

Guinea et al. , Nat. Phys.. 6 30 (2010).




Conclusions and future

@ Strain induces effective pseudo-magnetic fields which are
physically very real!

@ These produce Aharonov-Bohm interferences in the LDOS
which can be observed with STM

@ The required strain is low but the measurement may still be
challenging.

@ The effect could be potentially used to measure strain locally by
interferometry.

Thanks for your attention!



AB In topological insulators

Aharonov-Bohm oscillations in the local density of topological surface states

Zhen-Guo Fu,b? Ping Zhang, %3 * and Shu-Shen Lil:T

! State Key Laboratory for Superlattices and Microstructures,
Institute of Semiconductors, Chinese Academy of Sciences,
P. O. Box 912, Beiying 100083, People’s Republic of China
*LCP, Institute of Applied Physics and Computational Mathematics,
P.O. Box 8009, Beiping 100088, People’s Republic of China
?Center for Applied Physics and Technology. Peking University, Beijing 100871, People’s Republic of China
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