Aharonov-Bohm interferences from local deformations in graphene

<u>Fernando de Juan</u>, Alberto Cortijo, Maria Vozmediano and Andres Cano

Nature Physics (2011) DOI: 10.1038/NPHYS2034 INDIANA UNIVERSITY BLOOMINGTON

Graphene

Castro Neto, Guinea, Peres, Physics World (Nov 2006)

Two dimensional crystal

• One of the strongest materials ever measured: Young modulus of TPa

• Yet, corrugations (and 3D structure in general) ubiquitous

• It supports large values of strain (20%)

Interplay of electronics and structure!

Substrate induced curvature

AFM experiments: Ripples correlate with substrate morphology

Bubbles and wrinkles

"Observation of Graphene Bubbles and Effective Mass Transport under Graphene Films" Stolyarova *et al.*, Nanolett.. **9** 332 (2009).

"Scanning Tunneling Microscopy Characterization of the Electrical Properties of Wrinkles in Exfoliated Graphene Monolayers", Xu *et al.*, Nanolett. **9** 4446 (2009)

Controlling strain

"Controlled ripple texturing of

suspended graphene and ultrathin graphite membranes" Bao *et al.*, Nat. Nanotech. **4** 562 (2009)

"Impermeable atomic membranes from graphene sheets" Scott Bunch *et al.*, Nanolett. **8**, 2458 (2008)

- Introducing Nonuniform Strain to Graphene Using Dielectric Nanopillars" (cond-mat/1106.1507 Tomori et al.)
- Graphene bubbles with controllable curvature" (Cond-mat/1108.1701, Manchester group)
- Topological properties of artificial graphene assembled by atom manipulation", where they produced **atomically engineered strains**. (Manoharan group, APS 2011)
- And the list goes on...

Electrons in graphene

Tight binding band structure:

- Nearest neighbour hopping: t ~2.7 eV
- Two atoms per unit cell
- 2x2 Hamiltonian

$$H = -t \sum_{\langle ij \rangle} a_i^{\dagger} b_j + cc.$$

$$= -t \sum_{n=1}^{3} \left(\begin{array}{cc} 0 & e^{-i\vec{k}\cdot\vec{\delta}_n} \\ e^{i\vec{k}\cdot\vec{\delta}_n} & 0 \end{array} \right)$$

Strain and gauge fields

$$H = -\sum_{n=1}^{3} (t + \delta t_n) \left(\begin{array}{cc} 0 & e^{-i(\vec{K} + \vec{q}) \cdot \vec{d_n}} \\ e^{i(\vec{K} + \vec{q}) \cdot \vec{d_n}} & 0 \end{array} \right)$$

-Guinea, Horowitz, Le Doussal, Phys. Rev. B **77,** 205421 (2008) -Vozmediano, Katsnelson, Guinea Phys. Rep. **496**, 109–148 (2010)

$$\left(\begin{array}{cc} 0 & e^{-i\vec{K}\cdot\vec{d_n}} \\ e^{i\vec{K}\cdot\vec{d_n}} & 0 \end{array}\right) \equiv \vec{\sigma} \times \vec{d_n}$$

Dirac fermions: expand H in q

$$\approx -t \sum_{n=1}^{3} \begin{pmatrix} 0 & e^{-i\vec{K}\vec{d}_n}(1-i\vec{d}_n\vec{q}) \\ e^{i\vec{K}\vec{d}_n}(1+i\vec{d}_n\vec{q}) & 0 \end{pmatrix}$$
$$= -t \sum_{n=1}^{3} (\vec{\sigma} \times \vec{d}_n) i\sigma_z(\vec{q} \cdot \vec{d}_n)$$

$$= -t \sum_{n=1}^{3} (\vec{\sigma} \cdot \vec{d_n}) (\vec{q} \cdot \vec{d_n}) = -t \ \vec{\sigma} \cdot \vec{q}$$

Gauge field: expand H in δt_n

$$H = \sum_{n=1}^{3} \delta t_n \vec{\sigma} \times \vec{d}_n$$
$$A_1 = \frac{\sqrt{3}}{2} (\delta t_1 - \delta t_2)$$
$$A_2 = \frac{1}{2} (\delta t_1 + \delta t_2 - 2\delta t_3)$$
$$H = \vec{A} \cdot \vec{\sigma}$$

A general strain tensor

Strain induced magnetic fields

- These are physically real pseudo-magnetic fields!
- But time-reversal is preserved because the two valleys have opposite magnetic fields

 $B = \vec{\nabla} \times \vec{A}$

- They inherit the trigonal symmetry of the lattice!
- Morpurgo, & Guinea, "Intervalley scattering, long-range disorder, and effective time reversal symmetry breaking in graphene".. Phys. Rev. Lett. 97, 196804 (2006).
- Guinea, Katsnelson, Geim, "Energy gaps, topological insulator state and zero-field quantum Hall effect in graphene by strain engineering". Nature Phys. 6, 30–33 (2010).

"We believe that the suggested strategies to observe the pseudo-Landau gaps and QHE are completely attainable and will be realized sooner rather than later"

Direct evidence of gauge fields I

Direct evidence of gauge fields II

"Observation of Landau level-like quantizations at 77 K along a strained-induced graphene ridge" He *et al.*, cond-mat/1108.1016 (2011)

Aharonov-Bohm interferences

 $|\psi|^2 \propto |e^{ikd_1} + e^{ikd_2}|^2$ $\propto 1 + \cos(k(d_1 - d_2))$

Add magnetic flux through the solenoid:

 $\propto 1 + \cos(k(d_1 - d_2) + \phi)$

• Probability of measuring an electron in B depends on magnetic flux through the region enclosed by the path

Quantum interference in the LDOS

"Aharonov Bohm oscillations in the local density of states" A. Cano and I. Paul, Phys. Rev. B **80** 153401 (2009)

- Same AB physics in the LDOS
- Impurity scattering sets the path
- Semiclassical approximation required

Quantum interference in the LDOS

$$U_0 \to \widetilde{U}_0 = \frac{U_0}{1 - U_0 G_0(0)}$$

Multiple scattering from the same impurity is resummed in the T-matrix.

$$\delta G_{\text{loop}}(\mathbf{r},\mathbf{r}) = W^2 G_0(\mathbf{r}-\mathbf{r}_1) G_0(\mathbf{r}_1-\mathbf{r}_2) G_0(\mathbf{r}_2-\mathbf{r}_2)$$

$$W^{2} = \frac{\widetilde{U}_{0}^{2}}{1 - \widetilde{U}_{0}^{2}G_{0}(\mathbf{r}_{1} - \mathbf{r}_{2})G_{0}(\mathbf{r}_{2} - \mathbf{r}_{1})}$$

Multiple back and forth processes in the loop contribution are resummed in an analog function W.

Add a magnetic field

$$N_{A=0} = N_{return} + N_{loop}$$

$$A \text{ magnetic flux will modify the loop terms:}$$

$$N = N_{return} + N_{loop} \cos\left(\frac{\pi \Phi}{\Phi_0}\right)$$

$$\delta G^{(2)}(\mathbf{r}, \mathbf{r}) = U_0^2 \left[G_0(\mathbf{r}, \mathbf{r}_1)G_0(\mathbf{r}_1, \mathbf{r}_2)G_0(\mathbf{r}_2, \mathbf{r})e^{i\frac{\pi \Phi}{\Phi_0}} + G_0(\mathbf{r}, \mathbf{r}_2)G_0(\mathbf{r}_2, \mathbf{r})e^{-i\frac{\pi \Phi}{\Phi_0}}\right]$$

$$\delta G^{(2)}(\mathbf{r}, \mathbf{r}) = U_0^2 \left[G_0(\mathbf{r}, \mathbf{r}_1)G_0(\mathbf{r}_1, \mathbf{r}_2)G_0(\mathbf{r}_2, \mathbf{r})2\cos\frac{\pi \Phi}{\Phi_0}\right]$$

$$N(\omega, r) = N_{A=0}(\omega, r) + N_{loop}(\omega, r) \left[\cos\left(\frac{\pi \Phi(r)}{\Phi_0}\right) - 1\right]$$

Dirac fermions and interference

- Dirac fermions have a matrix Green's function

$$G_{0}(\mathbf{r}_{1},\mathbf{r}_{2};\omega) = -\frac{i\omega}{4\nu_{\rm F}} \left[H_{0}(\omega|\mathbf{r}_{1}-\mathbf{r}_{2}|) + i\frac{\sigma(\mathbf{r}_{1}-\mathbf{r}_{2})}{|\mathbf{r}_{1}-\mathbf{r}_{2}|} H_{1}(\omega|\mathbf{r}_{1}-\mathbf{r}_{2}|) \right]$$

- The previous manipulations require to commute them: non trivial. But all commutators proportional to σ_3 and vanish after the trace (note this is spoiled for gapped graphene!).

2

1

- Valley degree of freedom: very short range impurities may induce intervalley scattering. Pick longer ranged ones.

$$N(\omega, r) = N_{A=0}(\omega, r) + N_{loop}(\omega, r) \left[\cos(\frac{\pi \Phi(r)}{\Phi_0}) - 1 \right]$$

An experimental proposal

$$N_{A=0}(\omega, r)$$

- In the flat sample, the STM tip measures the usual standing wave patterns.

Induce controlled strain

Strain-induced interference

- In the curved sample, and after substraction of $N_{A=0}^{}$, we see a new standing wave pattern (Nloop) modulated by the cosine of the flux through the triangle.

$$N_{loop}(\omega, r) \left[\cos(\frac{\pi \Phi(r)}{\Phi_0}) - 1 \right]$$

Strain-induced interference

Circular perturbation

• Three-fold symmetric perturbation

$$u_r = u_0 r^2 \sin 3\theta$$

$$u_\theta = u_0 r^2 \cos 3\theta$$

$$u_0 = (u_{00}/\sigma^2) \exp(-r^2/2\sigma^2)$$

Guinea et al. , Nat. Phys.. 6 30 (2010).

Conclusions and future

• Strain induces effective pseudo-magnetic fields which are physically very real!

• These produce Aharonov-Bohm interferences in the LDOS which can be observed with STM

• The required strain is low but the measurement may still be challenging.

• The effect could be potentially used to measure strain locally by interferometry.

Thanks for your attention!

AB in topological insulators

Aharonov-Bohm oscillations in the local density of topological surface states

Zhen-Guo Fu,^{1,2} Ping Zhang,^{2,3,*} and Shu-Shen Li^{1,†}

¹State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083, People's Republic of China ²LCP, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, People's Republic of China ³Center for Applied Physics and Technology, Peking University, Beijing 100871, People's Republic of China

arXiv:1103.1710v1