

Introduction

Quantum order:

Assume a Hamiltonian with well defined ground state and energy gap above it

Zero temperature properties of matter identified by local operators: magnetisation $\langle \sigma_{\epsilon} \rangle$, identifies superconductivity...

Topological quantum order:

Identified by non-local operators VERY ILLUSIVE

The ground state can be described by winding number

Cold atoms:

Simulate the Haldane topological model with cold atoms

Measure Topo Order with experimentally plausible system

Overview

Cold atom simulation of Haldane's topological model

Two triangular fermionic lattices of different atom species.

Its ground state can have non-trivial winding number

Direct measurement

of topo order

$$B ext{ (periodic)}$$

$$S(k_x,k_y)$$

t ce Lpn

$$\mathbf{v} = \frac{1}{4\pi} \int_{B} \mathbf{S} \cdot \left(\partial_{k_{x}} \mathbf{S} \times \partial_{k_{y}} \mathbf{S} \right) d^{2}k$$

Counts how many times the vector S winds around the sphere when the argument (k_x,k_y) spans B.

Two triangular sublattices: A, B

Each loaded with fermionic atoms in internal states a, b

Hamiltonian:

$$H = \sum_{\langle j,k\rangle} (t_{jk}b_j^+ a_k + t_{jk}^* a_k^+ b_j)$$

$$+\sum_{j}\varepsilon(a_{j}^{+}a_{j}-b_{j}^{+}b_{j})+\sum_{\left\langle \left\langle j,k\right\rangle \right\rangle }t_{a}a_{j}^{+}a_{k}+\sum_{\left\langle \left\langle j,k\right\rangle \right\rangle }t_{b}b_{j}^{+}b_{k}$$

Interspieces tunneling $t_{jk} = te^{i\varphi}$ via Raman transitions (can be complex)

Linearisation of Hamiltonian around Fermi points

$$H \approx -E \sum_{k} (a_{k}^{+} b_{k}^{+}) \mathbf{S}(k) \cdot \sigma \begin{pmatrix} a_{k} \\ b_{k} \end{pmatrix}$$

$$\mathbf{S}(k) \cdot \boldsymbol{\sigma} \approx k_x \boldsymbol{\sigma}_x + k_y \boldsymbol{\sigma}_y + m \boldsymbol{\sigma}_z$$

Topological properties of the model can be read of from vector $S(k) = \langle \sigma \rangle$

Its components are determined by the populations of atoms in state a and state b -> possible with two species! t gives rise to $k_x\sigma_x + k_y\sigma_y$

 t_a, t_b, ε give rise to $m\sigma_z$. The mass m(k) can be +ve or -ve

Position of Fermi points with respect to mass landscape (two Fermi points in Brillouin zone, B)

$$\mathbf{S}(k) \cdot \boldsymbol{\sigma} \approx k_{x} \boldsymbol{\sigma}_{x} + k_{y} \boldsymbol{\sigma}_{y} + m \boldsymbol{\sigma}_{z}$$

$$\mathbf{v} = \frac{1}{4\pi} \int_{B} \mathbf{S} \cdot \left(\partial_{k_{x}} \mathbf{S} \times \partial_{k_{y}} \mathbf{S} \right) d^{2}k$$

Position of Fermi points with respect to mass landscape (two Fermi points in Brillouin zone, B)

Winding number (Chern number)

$$\mathbf{v} = \frac{1}{4\pi} \int_{\mathbf{R}} \mathbf{S} \cdot \left(\partial_{k_x} \mathbf{S} \times \partial_{k_y} \mathbf{S} \right) d^2 k$$

Skyrmion images

Time-of-flight images:

If the optical lattice and trapping is removed then the atoms move freely.

Their spatial distribution matches their initial momentum distribution. So the **Brillouin zone** becomes the **spatial distribution** of the atomic cloud.

Obtain densities of species $n_a(k), n_b(k)$

Calculate

$$S_z(k) = \frac{1}{2} \frac{n_a(k) - n_b(k)}{n_a(k) + n_b(k)}$$

By Raman rotations between a and b during cloud expansion we can calculate $S_x(k), S_y(k)$ by mapping them to $S_z(k)$

Skyrmion images

Time-of-flight images reveal skyrmions:

Skyrmion images

Time-of-flight images reveal skyrmions:

Resilience to experimental conditions

Pixelisation of images: $L \times L$ gives $\{S_m\}_{m=1}^{L \times L}$

$$L = 20$$

Also number of atoms: 17×17

Same results for 10000 atoms

Resilience to experimental conditions

How does harmonic confining potential affects topological behaviour?

$$V_i(x_i) = \frac{1}{2}m\omega^2 x_i^2$$

For Ca atoms

$$\frac{\omega}{2\pi}$$
 = 0, 60, 100Hz

Only topological component contributes to winding number

Winding number

Density of states

How did we do it?

Main ingredients that allow us to "see" topo order:

- Cold atoms: preparation/phase factors/read-out (Haldane's model was considered "unphisical")
- Two species: actual spin (not only mathematical tool)
- Time-of-flight: mapped momentum space to position space

(non-local observables became local)

- Single point correlation measurements (density)
- Topology is on our side (resilience to many local characteristics)

Conclusions

- Resilience of topological signature in the cold atom simulation of Haldane's model:
 - Small number of atoms
 - Coarse grained measurement
 - oInhomogeneous potential on top of opt lat
 - Errors in exact values of:
 - chemical potential
 - -# atoms
 - -finite temperature

Other methods (sensitive):

- -edge transport
- -eigenstate preparation
- -local estimate of density of states
- •Due to trapping there is always one disk with atoms in topological state that give $\nu = \pm 1$
- Temperature is expected to change the length of $\langle \sigma \rangle$ and not its orientation of S