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Strong interacting limit in the jellium model
The (quantum) jellium model in a box of volume V is defined by

Ĥ =

Ne∑
i=1

p̂2
i

2me
+

1
V

∑
q 6=0

2πe2

q2

(
ρ̂+q ρ̂−q − Ne

)
, ρ̂+q :=

Ne∑
i=1

e−iq ·̂r i .

The parameter

rs :=
e2/a

~2/(2mea2)
≡ a

aB
where a :=

(
Ne

V

)−1/3

measures the relative strength between the Coulomb and the kinetic
energy.
The ground state is a featureless compressible liquid when rs � 1, i.e.,
the Fermi liquid.
The ground state breaks spontaneously translation invariance when
rs � 1 by forming a Wigner crystal.
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2-dimensional Jellium model in a strong magnetic field

Assume the presence of a uniform magnetic field B ẑ and of a
confining potential along the ẑ direction, so that the single-particle
electronic levels are Landau levels.

ε

DoS

B

2d electron gas

The filling fraction of the Landau levels is the number

ν :=
n h c
e B

where n is the 2-dimensional electron density.
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The integer quantum Hall effect
ε

DoS

B

2d electron gas

At integer fillings of the Landau levels, the noninteracting ground state
is unique and the screened Coulomb interaction Vint can be treated
perturbatively, as long as transitions between Landau levels or
outside the confining potential Vconf along the magnetic field are
suppressed by the single-particle gaps:

Vint � ~ωc � Vconf, ωc = eB/(mc).
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The fractional quantum Hall effect

At fractional fillings of a Landau level, rs is effectively∞: A landau level
is a massively degenerate flat band of single-particle states.

Naively, one would expect a Wigner crystal (or more exotic ground
states with broken symmetry) to be selected by the interaction out of
all possible degenerate Slater determinants.

Instead, for “magic” filling fractions, featureless (i.e., liquid like) ground
states are selected by the screened Coulomb interaction.

For example, whenever 1/ν is an odd integer, the featureless ground
state is an incompressible ground state called a Laughlin state.
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Distinctive signature
The conductivity tensor is given by the classical Drude formula

lim
τ→∞

j =

(
0 +

(
BRH

)−1

−
(
BRH

)−1 0

)
E , R−1

H := −n e c,

in the ballistic regime when translation invariance is not broken.

In the presence of moderate static disorder, all but one single-particles
are localized in a Landau level whereas many-body groundstates such
as the Wigner crystal are pinned.

In the presence of moderate static disorder the
magic filling fractions turn into plateaus at which

σxx = 0, σxy = ν × e2

h

as a function of B for fixed n.
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Strong interacting limit in lattice models

In any lattice model, the single-particle Bloch spectrum is bounded
from above and from below.

The only possible way to take the ratio

rs :=
Vint
∆Ei

→∞

between the characteristic interaction energy scale Vint and the band
width ∆Ei of the i-th Bloch band without inducing inter-band
transitions to the bands i − 1 and i + 1 is to flatten the i-th Bloch band,
∆Ei → 0 while keeping the gaps to the i − 1 and i + 1 Bloch bands
much larger than Vint.

Can band-flattening and interactions deliver a fractional quantum Hall
state without an applied uniform magnetic field?
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Question: Can band-flattening and interactions deliver a fractional
quantum Hall state without an applied uniform magnetic field?

E. Tang, J. W. Mei, and X. G. Wen, Phys. Rev. Lett., 106, 236802 (2011).

K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys. Rev. Lett., 106, 236803
(2011).

T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett., 106, 236803
(2011).

Numerical answer: Yes!

T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett., 106, 236803
(2011).

D. N. Sheng, Z. Gu, K. Sun, and L. Sheng, arXiv:1102.2658.

Y.-F. Wang, Z.-C. Gu, C.-D. Gong, D. N. Sheng, arXiv:1103.1686.

N. Regnault and B. A. Bernevig, arXiv:1105.4867.

T. Neupert, L. Santos, S. Ryu, C. Chamon, and C. Mudry, arXiv:1106.3989.

D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, arXiv:1106.4296.
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Analytical approaches: Wave functions
B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).

X.-L. Qi, arXiv:1105.4298.

L. Santos, T. Neupert, S. Ryu, C. Chamon, and C. Mudry, arXiv:1108.2440.

Yuan-Ming Lu and Ying Ran, arXiv:1109.0226.

Analytical approaches: Algebraic
S. Parameswaran, R. Roy, and S. Sondhi, arXiv:1106.4025.

M. O. Goerbig, arXiv:1107.1986.

G. Murthy and R. Shankar, arXiv:1108.5501.

Analytical approaches: Effective quantum field theories for
time-reversal symmetric fractional topological insulators

M. Levin and A. Stern, Phys. Rev. Lett. 103, 196803 (2009).

T. Neupert, L. Santos, S. Ryu, C. Chamon, and C. Mudry, arXiv:1106.3989.
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Definition of the noninteracting lattice models

Let Λ = A ∪ B be a bipartite 2-dimensional lattice.

Example 1: Honeycomb lattice

Example 2: Square lattice

If spinless electrons are hopping so as to preserve the point group
sublattice symmetry of sublattice A, then

H0 :=
∑

k∈BZ

ψ†kHkψk , Hk := B0,kσ0 + Bk · σ, ψk :=

(
ck ,A
ck ,B

)
where BZ stands for the Brillouin zone of the A sublattice.
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Chern numbers
If we define

B̂k :=
Bk
|Bk |

, tanφk :=
B̂2,k

B̂1,k

, cos θk := B̂3,k ,

then eigenvalues and eigenvectors of Hamiltonian Hk are

ε±,k = B0,k ± |Bk |, χ+,k =

(
e−iφk/2 cos θk

2
e+iφk/2 sin θk

2

)
, χ−,k =

(
e−iφk/2 sin θk

2
−e+iφk/2 cos θk

2

)
.

The first Chern-numbers for the bands labeled by ± are

C± = ∓
∫

k∈BZ

d2k
4π

εµν

[
∂kµ cos θ(k)

] [
∂kνφ(k)

]
.

They have opposite signs if non-zero. All the information about the
topology of the Bloch bands of a gaped system is encoded in the
occupied single-particle Bloch wave functions.
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Example 1: Honeycomb lattice (Haldane 1988)

If the NN hopping
amplitude, t1 > 0, is positive
(solid lines) and the NNN
hopping amplitude are
t2ei2πΦ/Φ0 , with t2 ≥ 0, in the
direction of the arrow
(dotted lines),

then

B0,k := 2t2 cos Φ
3∑

i=1

cos k · bi ,

Bk :=
3∑

i=1

 t1 cos k · ai
t1 sin k · ai

−2t2 sin Φ sin k · bi

 .

(cos Φ = t1/(4t2) = 3
√

3/43 with the
lower-band flatness ratio 1/7)
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Example 2: Square lattice (Wen, Wilczek, and Zee 1989)

If the NN hopping
amplitudes are t1eiπ/4, with
t1 > 0, in the direction of the
arrow (solid lines) and the
NNN hopping amplitudes
are t2 ≥ 0 and −t2 along the
dashed and dotted lines,
respectively.

then

B0,k := 0,

B1,k + iB2,k := t1 e−iπ/4[1+

e+i(ky−kx )]+ t1 e+iπ/4[e−ikx +

e+iky
]
,

B3,k := 2t2
(
cos kx − cos ky

)
,

(t1/t2 =
√

2 with the flatness ratio 1/5)
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Band flattening
Band-flattening is defined by

Hflat
k :=

Hk
ε−,k

.

Let there be N sites on sublattice A and N sites on sublattice B.

We fix the number of spinless fermions to be N (half-filled Λ := A ∪ B).

Before band-flattening, the half-filled groundstate is

〈r1, · · · , rN |k1, · · · ,kN〉 = det

 eik1·r1χ−,k1
· · · eikN ·r1χ−,kN

...
...

...
eik1·rNχ−,k1

, · · · eikN ·rNχ−,kN

 .

After band-flattening, the half-filled groundstate has not changed, for
all single-particle Bloch states are unchanged under band flattening.
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Band flattening preserves locality

Let
On(x) :=

∑
i∈Λ

an,i δ(x − r i ), n = 1,2,

be any pair of two Hermitean local operators.

Define

C(1,2)
k1,··· ,kN

(x ,y) := 〈k1, · · · ,kN |O1(x)O2(y)|k1, · · · ,kN〉 .

The correlation function

C(1,2)(x ,y) ∝ e−∆|x−y |

must decay exponentially before and after band flattening, for neither
the existence of the single-particle gap ∆ nor the eigenfunctions are
affected by the band flattening.
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Definition of the interacting lattice model
Define the many-body Hamiltonian

H := Hflat
0 + Hint

where
Hint :=

1
2

∑
i,j∈Λ

ρi Vi,jρj ≡ V
∑
〈ij〉

ρi ρj , V>0,

and ρi is the occupation number on the site i ∈ Λ := A ∪ B of the
square lattice.

Define the filling fraction ν to be the ratio

ν :=
Nf
N

where Nf is the number of spinless fermions and N the number of sites
in sublattice A of the square lattice.
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Fractional quantum Hall ground state

Three distinctive properties of a fractional quantum Hall ground state
at filling fraction ν < 1 (where ν−1 is an odd integer) and with periodic
boundary conditions (toroidal geometry) are

the existence of a spectral gap above the ground state manifold,

the ν−1–fold topological degeneracy of the ground state manifold
in the thermodynamic limit,

and the quantization ν of the Hall conductance σxy in units of
νe2/h.
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Spectral gap if N = 3× 6 and Nf = 6, i.e., ν = 1/3
Add a sublattice-staggered chemical potential 4µs to the single-particle
Hamiltonian by replacing B3,k → B3,k + 4µs.
The parameters t2 and µs of Hflat

0 interpolate between topological
(|t2| > |µs|) and non-topological (|t2| < |µs|) single-particle bands.

Here, g := (2/π) arctan |t2/µs| and all energies are measured relative
to the interacting band width Eb. The gap is of order V when g = 0.
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Topological degeneracy if N = 3× 6 and Nf = 6
Impose the twisted boundary conditions

|Ψγ(r + Nxx)〉 = eiγx |Ψγ(r)〉, |Ψγ(r + Nyy)〉 = eiγy |Ψγ(r)〉

where γ t = (γx , γy ) are the twisting angles and Nx × Ny = N the
number of unit cells.

Due to translational invariance, the Hamiltonian does not couple states
with different center of mass momenta Q := k1 + . . .+ kNf

, where
k i , i = 1, · · · ,Nf are the single-particle momenta of an Nf -particle
state.

At 1/3 filling of the 3× 6 sublattice A, the particle number Nf = 6 is
commensurate with the lattice dimensions and all three topological
states have the same Q.

As a consequence, their topological degeneracy is lifted and a unique
ground state appears.
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We can now use twisted boundary conditions to probe the topological
nature of the ground state: varying γx between 0 and 2π is equivalent
to the adiabatic insertion of a flux quantum in the system.

During this process, a topological ground state with σxy × h/e2 = 1/3
should undergo two level crossings with the other two gaped
topological states (Thouless 1989).
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Hall conductance if N = 3× 6 and Nf = 6
The Hall conductance σxy is related to the Chern-number C of the
many-body ground state |Ψ〉 as

σxy = C e2/h

where (Niu and Thouless 1984)

C :=
1

2πi

∫
γ∈[0,2π]2

d2γ ∇γ ∧
〈
Ψγ

∣∣∇γ

∣∣Ψγ

〉
.

Alternatively, we introduce

C̃ =
1

2πi

∫
k∈BZ

d2k n−,k
[
∇k ∧

(
χ†−,k∇kχ−,k

)]

where n−,k = 〈Ψ|c†−,k c−,k |Ψ〉 is the occupation number of the single-particle Bloch
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When µs = 0, t2 = t1/
√

2, we find C = 0.29 and C̃ = 0.30 and attribute
the deviations from C = 1/3 to finite-size effects.

When µs = t1/
√

2, t2 = 0, we find that C and C̃ vanish to a precision of
10−6 and 10−3, respectively.
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Definition of the lattice model supporting the FQSHE

Bernevig and Zhang 2006

Let

H0 :=
∑

k∈BZ

(
ψ†k ,↑

Bk · τ
|Bk |

ψk ,↑ + ψ†k ,↓
B−k · τ t∣∣B−k

∣∣ ψk ,↓

)
.

This kinetic energy supports the integer QSH quantization
σ

spin
xy = ±2 × e

4π .

We then choose the interaction

Hint := U
∑
i∈Λ

ρi,↑ρi,↓ + V
∑
〈ij〉∈Λ

(
ρi,↑ρj,↑ + ρi,↓ρj,↓ + 2λρi,↑ρj,↓

)
,

U,V ≥ 0.
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Numerical diagonalization

λ

a)

b)

0 10 20

3-fold

9-fold

0

1

0.5

0 1 2 3 U/V

0

0.1

E/V

γ
x

2̟0 ̟

0.2

U/V = 0, λ = 0
c)

γ
x

2̟0 ̟ γ
x

2̟0 ̟

d)
U/V = 0, λ = 1 U/V = 3, λ = 1

∋

Numerical diagonalization results for 16 electrons
when sublattice A is made of 3× 4 sites and with
t2/t1 = 0.4. (a) Ground state degeneracies.
Denote with En the n-th lowest energy eigenvalue
of the many-body spectrum where E1 is the
many-body ground state, i.e., En+1 ≥ En for
n = 1, 2, · · · . Define the parameter ε by
εn := (En+1 − En)/(En − E1). If a large gap
En+1 − En opens up between two consecutive
levels En+1 and En compared to the cumulative
level splitting En − E1 between the first n
many-body eigenstates induced by finite-size
effects, then the parameter εn is much larger than
unity. The parameter εn has been evaluated for
n = 3 and n = 9, yielding the blue and red regions,
respectively. For all other n 6= 1, no regions with
εn & O(1) of significant size were found. Within
the limited range of available system sizes, it is thus
not possible to decide on whether and how the
level-splitting above the ground state in the white
regions of the parameter space extrapolates in the
thermodynamic limit. (b)-(d) The lowest
eigenvalues with spin-dependent twisted boundary
conditions as a function of the twisting angle γx .
The number of low-lying states that are
energetically separated from the other states is 9,
3, and 3, respectively. In panel (c), it is the lowest
band parametrized by γx that is 3-fold degenerate.
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Case λ = U/V = 0: decoupled FQH states

The model decouples into two FQH-like states at 2/3 filling, one for each spin
orientation.

The low-energy effective theory for this state could be compatible with the
choice

K =


+1 +1 0 0
+1 −2 0 0
0 0 −1 −1
0 0 −1 +2

 , Q =


1
0
1
0

 ,

for the K matrix and the charge vector Q in that it has degeneracy
|det K | = 32 = 9 as confirmed by the numerical results.

This phase is destabilized by introducing a sufficiently strong coupling
between the two FQH states via λ and U.
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Case λ = 1, U/V > 2: Spontaneous symmetry breaking
We observe that the ground state has the maximal spin-polarization that is
allowed by the Pauli principle (Stoner instability).
To interpret this numerical result, first recall that, after projection onto the
lowest bands, at most Lx × Ly electrons may have the same spin, i.e., 12 for
the case at hand. Now, the filling fraction is 2/3, i.e., there are
4/3× Lx × Ly = 16 electrons. If 12 electrons are fully spin polarized, which is
what we observe numerically, then the remaining 1/3× Lx × Ly = 4 electrons
may form a 1/3 FQH-like state.
We conjecture that the low-energy effective theory for this fully spin-polarized
ground state is characterized by the K matrix

K =

(
+1 0
0 −3

)
, Q =

(
1
1

)
with the filling fraction

ν = QT K−1 Q = 2/3.
This K -matrix does not obey time-reversal symmetry since time-reversal
symmetry is spontaneously broken. The degeneracy |det K | = 3 is confirmed
by the numerical results. The state thus obtained resembles the conventional
double-layer 2/3 FQH state, with the difference that the electron spins are not
fully polarized.
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Case λ = 1, U/V = 0: Possible paired state

A time-reversal symmetric state with a spectral gap and a 3-fold ground state
degeneracy is obtained for small U/V .

This state cannot be captured by the time-reversal symmetric Abelian
Chern-Simons theory since its degeneracy is not the square of an integer,
despite the time-reversal symmetry.

One may speculate that this state realizes some real-space pairing of spin-up
with spin-down electrons, since for small U/V it costs little energy to have two
electrons of opposite spin at the same lattice site.
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Summary

We have proposed a simple recipe to deform any non-interacting
lattice model so as to obtain flat bands, while preserving locality.

We flattened the bands of the chiral π-flux phase and then lifted
the resulting macroscopic ground state degeneracy with repulsive
interactions.

Via exact diagonalization, we have found signatures for a FQH-like
topological ground state at 1/3 filling.

We took the same approach to construct a FQSH-state and found
microscopic signatures for it.

This opens the door for the possibility of realizing dissipativeless
charge transport (quantum computing?) at room temperature.
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Bulk time-reversal symmetric effective theory (Abelian)
Define S := S0 + Se + Ss with

S0 := −
∫

dt d2x εµνρ
1

4π
Kij ai

µ ∂ν aj
ρ,

Se := +

∫
dt d2x εµνρ

e
2π

Qi Aµ∂ν ai
ρ,

Ss := +

∫
dt d2x εµνρ

s
2π

Si Bµ∂ν ai
ρ,

and

K =

(
κ ∆

∆T −κ

)
, κT = κ ∈ GL(N,Z), ∆T = −∆ ∈ GL(N,Z),

Q =

(
%
%

)
∈ Z2N , S =

(
%
−%

)
∈ Z2N , (−)Qi = (−)Kii .

Then

νe := QT K−1 Q = 0, νs :=
1
2

QT K−1 S 6= 0, σsH :=
e

2π
× νs.
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Wave function for N = 1

If

K =

(
+m 0
0 −m

)
∈ GL(2,Z), Q =

(
1
1

)
∈ Z2,

for some given positive odd integer m, then

νs =
1
m

and

Ψ1/m ({z, z̄}n | {w , w̄}n) = n∏
i=1

n∏
j=i+1

(
zi − zj

)m (
w̄i − w̄j

)m

 n∏
i=1

exp

(
−
∣∣zi

∣∣2 +
∣∣w̄i

∣∣2
4`2

)
.
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Wave function in the symmetric representation for N = 2
If

K =

+

(
m1 n
n m2

)
+

(
0 +d
−d 0

)
−
(

0 +d
−d 0

)
−
(

m1 n
n m2

)
 ∈ GL(4,Z), Q =


1
1
1
1

 ∈ Z4,

with m1m2 − n2 > 0, then

νs =
m1 + m2 − 2n

m1 m2 − n2 + d2

and [generalization of Halperin’s (m1,m2,n) bilayer function]

Ψsymm
m1,m2,n,d

(
{z1, z̄1}n1

; {z2, z̄2}n2
| {w1, w̄1}n1

; {w2, w̄2}n2

)
=

Ψ1/m1

(
{z1, z̄1}n1

| {w1, w̄1}n1

)
×Ψ1/m2

(
{z2, z̄2}n2

| {w2, w̄2}n2

)
×

n1∏
i=1

n2∏
j=1

(
z1,i − z2,j

)n (w̄1,i − w̄2,j
)n (z1,i − w2,j

)d (w̄1,i − z̄2,j
)d
.
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Wave function in the hierarchical representation for N = 2
If

K =

+

(
+m +1
+1 −p

)
+

(
0 +d
−d 0

)
−
(

0 +d
−d 0

)
−
(

+m +1
+1 −p

)
 ∈ GL(4,Z), Q =


1
0
1
0

 ∈ Z4,

with m a positive odd integer and p an even integer then

νs =
p

mp + 1− d2

and [generalization of Halperin’s ν = p/(mp + 1) bilayer function]

Ψhier
m,−p,1,d

(
{z, z̄}pn | {w , w̄}pn

)
= n∏

i=1

∫
Ω

d2 ηi

∫
Ω

d2 ξi

×Ψ1/m

(
{z, z̄}pn | {w , w̄}pn

)
×Ψ1/p

({
ξ, ξ̄
}

n | {η, η̄}n

)

×
pn∏

i=1

n∏
j=1

(
zi − ηj

) (
w̄i − ξ̄j

) (
zi − ξj

)d (w̄i − η̄j
)d
.
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Edge theory with time-reversal symmetry
The bulk action with a two-body and translation-invariant interaction is
equivalent to

Ĥ0 :=

L∫
0

dx
1

4π
∂x Φ̂T V ∂x Φ̂

where V is a 2N × 2N symmetric and
positive definite matrix and[

Φ̂i (t , x), Φ̂j (t , x
′)
]

= −iπ
(

K−1
ij sgn(x − x ′) + Θij

)
.

y

– Ly/2 + Ly/2

Here,
Θij := K−1

ik Lkl K−1
lj

and the antisymmetric 2N × 2N matrix L is defined by (Haldane 1995)

Lij = sgn(i − j)
(
Kij + Qi Qj

)
,

where sgn(0) = 0 is understood.
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Tunneling of electronic charge among the different edge branches is

Ĥint := −
L∫

0

dx
∑
T∈L

hT (x) : cos
(

T TK Φ̂(x) + αT (x)
)

: .

The real functions hT (x) ≥ 0 and 0 ≤ αT (x) ≤ 2π encode information about
the disorder along the edge when position dependent. The set

L :=
{

T ∈ Z2N
∣∣T TQ = 0

}
encodes all the possible charge neutral tunneling processes, i.e., those that
just rearrange charge among the branches.
At least one pair of Kramers degenerate edge state remains delocalized
along the edge described by Ĥ := Ĥ0 + Ĥint if the integer

R := r %T (κ−∆)−1 %

is odd. Here, the integer r is the smallest integer such that all the N
components of the vector r (κ−∆)−1 % are integers.
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