Fractional topological insulators

Christopher Mudry ${ }^{1}$ Titus Neupert ${ }^{1}$ Claudio Chamon ${ }^{2}$ Luiz Santos ${ }^{3}$ Shinsei Ryu ${ }^{4}$

${ }^{1}$ Paul Scherrer Institut, Switzerland
${ }^{2}$ Boston University, USA
${ }^{3}$ Harvard University, USA
${ }^{4}$ University of Illinois, Urbana-Champaign, USA

Frascati, 07 September 2011

Outline

(9) Introduction
(2) Definition of the noninteracting lattice models
(3) Band flattening
4. Definition of the interacting lattice model
(5) Fractional quantum Hall ground state

6 Numerical evidence thereof
(7) Fractional quantum spin Hall ground state
(8) Numerical evidence thereof
(9) Summary

Strong interacting limit in the jellium model

The (quantum) jellium model in a box of volume V is defined by
$\widehat{H}=\sum_{i=1}^{N_{e}} \frac{\widehat{\boldsymbol{p}}_{i}^{2}}{2 m_{\mathrm{e}}}+\frac{1}{V} \sum_{\boldsymbol{q} \neq 0} \frac{2 \pi e^{2}}{\boldsymbol{q}^{2}}\left(\widehat{\rho}_{+\boldsymbol{q}} \widehat{\boldsymbol{\rho}}_{-\boldsymbol{q}}-N_{\mathrm{e}}\right), \quad \widehat{\rho}_{+\boldsymbol{q}}:=\sum_{i=1}^{N_{e}} e^{-\mathrm{i} \boldsymbol{q} \cdot \widehat{\boldsymbol{r}}_{i}}$.

The parameter

measures the relative strength between the Coulomb and the kinetic energy.
The ground state is a featureless compressible liquid when $r_{\mathrm{s}} \ll 1$, i.e., the Fermi liquid.

The ground state breaks spontaneously translation invariance when $r_{s} \gg 1$ by forming a Wigner crystal.

Strong interacting limit in the jellium model

The (quantum) jellium model in a box of volume V is defined by

$$
\widehat{H}=\sum_{i=1}^{N_{e}} \frac{\widehat{\boldsymbol{p}}_{i}^{2}}{2 m_{\mathrm{e}}}+\frac{1}{V} \sum_{\boldsymbol{q} \neq 0} \frac{2 \pi e^{2}}{\boldsymbol{q}^{2}}\left(\widehat{\rho}_{+\boldsymbol{q}} \widehat{\boldsymbol{\rho}}_{-\boldsymbol{q}}-N_{\mathrm{e}}\right), \quad \widehat{\rho}_{+\boldsymbol{q}}:=\sum_{i=1}^{N_{e}} e^{-\mathrm{i} \cdot \boldsymbol{q} \cdot \hat{r}_{i}} .
$$

The parameter

$$
r_{\mathrm{s}}:=\frac{e^{2} / a}{\hbar^{2} /\left(2 m_{\mathrm{e}} a^{2}\right)} \equiv \frac{a}{a_{\mathrm{B}}} \quad \text { where } \quad a:=\left(\frac{N_{\mathrm{e}}}{V}\right)^{-1 / 3}
$$

measures the relative strength between the Coulomb and the kinetic energy.
the Fermi liquid.
The ground state breaks spontaneously translation invariance when

Strong interacting limit in the jellium model

The (quantum) jellium model in a box of volume V is defined by

$$
\widehat{H}=\sum_{i=1}^{N_{e}} \frac{\widehat{\boldsymbol{p}}_{i}^{2}}{2 m_{\mathrm{e}}}+\frac{1}{V} \sum_{\boldsymbol{q} \neq \boldsymbol{0}} \frac{2 \pi e^{2}}{\boldsymbol{q}^{2}}\left(\widehat{\rho}_{+\boldsymbol{q}} \widehat{\boldsymbol{\rho}}_{-\boldsymbol{q}}-N_{\mathrm{e}}\right), \quad \widehat{\rho}_{+\boldsymbol{q}}:=\sum_{i=1}^{N_{e}} e^{-\mathrm{i} \cdot \boldsymbol{q} \cdot \widehat{r}_{i}} .
$$

The parameter

$$
r_{\mathrm{s}}:=\frac{e^{2} / a}{\hbar^{2} /\left(2 m_{\mathrm{e}} a^{2}\right)} \equiv \frac{a}{a_{\mathrm{B}}} \quad \text { where } \quad a:=\left(\frac{N_{\mathrm{e}}}{V}\right)^{-1 / 3}
$$

measures the relative strength between the Coulomb and the kinetic energy.
The ground state is a featureless compressible liquid when $r_{\mathrm{s}} \ll 1$, i.e., the Fermi liquid.

Strong interacting limit in the jellium model

The (quantum) jellium model in a box of volume V is defined by

$$
\widehat{H}=\sum_{i=1}^{N_{c}} \frac{\hat{\boldsymbol{p}}_{i}^{2}}{2 m_{\mathrm{e}}}+\frac{1}{V} \sum_{\boldsymbol{q} \neq 0} \frac{2 \pi e^{2}}{\boldsymbol{q}^{2}}\left(\widehat{\rho}_{+\boldsymbol{q}} \widehat{\boldsymbol{\rho}}_{-\boldsymbol{q}}-N_{\mathrm{e}}\right), \quad \widehat{\rho}_{+\boldsymbol{q}}:=\sum_{i=1}^{N_{c}} e^{-\mathrm{i} \cdot \boldsymbol{q} \cdot \hat{r}_{i}} .
$$

The parameter

$$
r_{\mathrm{s}}:=\frac{e^{2} / a}{\hbar^{2} /\left(2 m_{\mathrm{e}} a^{2}\right)} \equiv \frac{a}{a_{\mathrm{B}}} \quad \text { where } \quad a:=\left(\frac{N_{\mathrm{e}}}{V}\right)^{-1 / 3}
$$

measures the relative strength between the Coulomb and the kinetic energy.
The ground state is a featureless compressible liquid when $r_{\mathrm{s}} \ll 1$, i.e., the Fermi liquid.
The ground state breaks spontaneously translation invariance when $r_{\mathrm{s}} \gg 1$ by forming a Wigner crystal.

2-dimensional Jellium model in a strong magnetic field

Assume the presence of a uniform magnetic field $B \hat{\mathbf{z}}$ and of a confining potential along the \hat{z} direction, so that the single-particle electronic levels are Landau levels.

The filling fraction of the Landau levels is the number

where n is the 2-dimensional electron density.

2-dimensional Jellium model in a strong magnetic field

Assume the presence of a uniform magnetic field $B \hat{\mathbf{z}}$ and of a confining potential along the \hat{z} direction, so that the single-particle electronic levels are Landau levels.

The filling fraction of the Landau levels is the number

$$
\nu:=\frac{n h c}{e B}
$$

where n is the 2-dimensional electron density.

The integer quantum Hall effect

2d electron gas

At integer fillings of the Landau levels, the noninteracting ground state is unique and the screened Coulomb interaction $V_{\text {int }}$ can be treated perturbatively, outside the confining potential $V_{\text {con }}$ along the magnetic field are suppressed by the single-particle gaps:

The integer quantum Hall effect

2d electron gas

At integer fillings of the Landau levels, the noninteracting ground state is unique and the screened Coulomb interaction $V_{\text {int }}$ can be treated perturbatively, as long as transitions between Landau levels outside the confining potential $V_{\text {conf }}$ along the magnetic field are suppressed by the single-particle gaps:
$=e B /(m c)$.

The integer quantum Hall effect

2d electron gas

At integer fillings of the Landau levels, the noninteracting ground state is unique and the screened Coulomb interaction $V_{\text {int }}$ can be treated perturbatively, as long as transitions between Landau levels or outside the confining potential $V_{\text {conf }}$ along the magnetic field are suppressed by the single-particle gaps:
$=e B /(m c)$

The integer quantum Hall effect

2d electron gas

At integer fillings of the Landau levels, the noninteracting ground state is unique and the screened Coulomb interaction $V_{\text {int }}$ can be treated perturbatively, as long as transitions between Landau levels or outside the confining potential $V_{\text {conf }}$ along the magnetic field are suppressed by the single-particle gaps:

$$
V_{\mathrm{int}} \ll \hbar \omega_{\mathrm{c}} \ll V_{\text {conf }}, \quad \omega_{\mathrm{c}}=e B /(m c)
$$

The fractional quantum Hall effect

At fractional fillings of a Landau level, r_{s} is effectively ∞ : A landau level is a massively degenerate flat band of single-particle states.

> Naively, one would expect a Wigner crystal (or more exotic ground states with broken symmetry) to be selected by the interaction out of all possible degenerate Slater determinants.

> Instead, for "magic" filling fractions, featureless (i.e., liquid like) ground states are selected by the screened Coulomb interaction.

For example, whenever $1 / \nu$ is an odd integer, the featureless ground state is an incompressible ground state called a Laughlin state.

The fractional quantum Hall effect

At fractional fillings of a Landau level, r_{s} is effectively ∞ : A landau level is a massively degenerate flat band of single-particle states.

Naively, one would expect a Wigner crystal (or more exotic ground states with broken symmetry) to be selected by the interaction out of all possible degenerate Slater determinants.

Instead, for "magic" filling fractions, featureless (i.e., liquid like) ground states are selected by the screened Coulomb interaction.

For example, whenever $1 / \nu$ is an odd integer, the featureless ground state is an incompressible ground state called a Laughlin state.

The fractional quantum Hall effect

At fractional fillings of a Landau level, r_{s} is effectively ∞ : A landau level is a massively degenerate flat band of single-particle states.

Naively, one would expect a Wigner crystal (or more exotic ground states with broken symmetry) to be selected by the interaction out of all possible degenerate Slater determinants.

Instead, for "magic" filling fractions, featureless (i.e., liquid like) ground states are selected by the screened Coulomb interaction.

For example, whenever $1 / \nu$ is an odd integer, the featureless ground state is an incompressible ground state called a Laughlin state.

The fractional quantum Hall effect

At fractional fillings of a Landau level, r_{s} is effectively ∞ : A landau level is a massively degenerate flat band of single-particle states.

Naively, one would expect a Wigner crystal (or more exotic ground states with broken symmetry) to be selected by the interaction out of all possible degenerate Slater determinants.

Instead, for "magic" filling fractions, featureless (i.e., liquid like) ground states are selected by the screened Coulomb interaction.

For example, whenever $1 / \nu$ is an odd integer, the featureless ground state is an incompressible ground state called a Laughlin state.

Distinctive signature

The conductivity tensor is given by the classical Drude formula

$$
\lim _{\tau \rightarrow \infty} \boldsymbol{j}=\left(\begin{array}{cc}
0 & +\left(B R_{\mathrm{H}}\right)^{-1} \\
-\left(B R_{\mathrm{H}}\right)^{-1} & 0
\end{array}\right) \boldsymbol{E}, \quad R_{\mathrm{H}}^{-1}:=-n e c,
$$

in the ballistic regime when translation invariance is not broken.
In the presence of moderate static disorder, all but one single-particles are localized in a Landau level whereas many-body groundstates such as the Wigner crystal are pinned.
In the presence of moderate static disorder the magic filling fractions turn into plateaus at which

as a function of B for fixed n.

Distinctive signature

The conductivity tensor is given by the classical Drude formula

$$
\lim _{\tau \rightarrow \infty} \boldsymbol{j}=\left(\begin{array}{cc}
0 & +\left(B R_{\mathrm{H}}\right)^{-1} \\
-\left(B R_{\mathrm{H}}\right)^{-1} & 0
\end{array}\right) \boldsymbol{E}, \quad R_{\mathrm{H}}^{-1}:=-n e c
$$

in the ballistic regime when translation invariance is not broken.
In the presence of moderate static disorder, all but one single-particles are localized in a Landau level whereas many-body groundstates such as the Wigner crystal are pinned.
In the presence of moderate static disorder the
magic filling fractions turn into plateaus at which

Distinctive signature

The conductivity tensor is given by the classical Drude formula

$$
\lim _{\tau \rightarrow \infty} \boldsymbol{j}=\left(\begin{array}{cc}
0 & +\left(B R_{\mathrm{H}}\right)^{-1} \\
-\left(B R_{\mathrm{H}}\right)^{-1} & 0
\end{array}\right) \boldsymbol{E}, \quad R_{\mathrm{H}}^{-1}:=-n e c
$$

in the ballistic regime when translation invariance is not broken.
In the presence of moderate static disorder, all but one single-particles are localized in a Landau level whereas many-body groundstates such as the Wigner crystal are pinned.

In the presence of moderate static disorder the magic filling fractions turn into plateaus at which

$$
\sigma_{x x}=0, \quad \sigma_{x y}=\nu \times \frac{e^{2}}{h}
$$

as a function of B for fixed n.

Strong interacting limit in lattice models

In any lattice model, the single-particle Bloch spectrum is bounded from above and from below.

The only possible way to take the ratio
between the characteristic interaction energy scale $V_{\text {int }}$ and the band width ΔE_{i} of the i-th Bloch band without inducing inter-band transitions to the bands $i-1$ and $i+1$ is to flatten the i-th Bloch band, $\Delta E_{i} \rightarrow 0$ while keeping the gaps to the $i-1$ and $i+1$ Bloch bands much larger than $V_{\text {int }}$.

Can band-flattening and interactions deliver a fractional quantum Hall state without an applied uniform magnetic field?

Strong interacting limit in lattice models

In any lattice model, the single-particle Bloch spectrum is bounded from above and from below.

The only possible way to take the ratio

$$
r_{\mathrm{s}}:=\frac{V_{\mathrm{int}}}{\Delta E_{i}} \rightarrow \infty
$$

between the characteristic interaction energy scale $V_{\text {int }}$ and the band width ΔE_{i} of the i-th Bloch band without inducing inter-band transitions to the bands $i-1$ and $i+1$ is to flatten the i-th Bloch band,
$\Delta E_{i} \rightarrow 0$ while keeping the gaps to the $i-1$ and $i+1$ Bloch bands

Strong interacting limit in lattice models

In any lattice model, the single-particle Bloch spectrum is bounded from above and from below.

The only possible way to take the ratio

$$
r_{\mathrm{s}}:=\frac{V_{\mathrm{int}}}{\Delta E_{i}} \rightarrow \infty
$$

between the characteristic interaction energy scale $V_{\text {int }}$ and the band width ΔE_{i} of the i-th Bloch band without inducing inter-band transitions to the bands $i-1$ and $i+1$ is to flatten the i-th Bloch band, $\Delta E_{i} \rightarrow 0$ while keeping the gaps to the $i-1$ and $i+1$ Bloch bands much larger than V_{int}.

Strong interacting limit in lattice models

In any lattice model, the single-particle Bloch spectrum is bounded from above and from below.

The only possible way to take the ratio

$$
r_{\mathrm{s}}:=\frac{V_{\mathrm{int}}}{\Delta E_{i}} \rightarrow \infty
$$

between the characteristic interaction energy scale $V_{\text {int }}$ and the band width ΔE_{i} of the i-th Bloch band without inducing inter-band transitions to the bands $i-1$ and $i+1$ is to flatten the i-th Bloch band, $\Delta E_{i} \rightarrow 0$ while keeping the gaps to the $i-1$ and $i+1$ Bloch bands much larger than $V_{\text {int }}$.

Can band-flattening and interactions deliver a fractional quantum Hall state without an applied uniform magnetic field?

Question: Can band-flattening and interactions deliver a fractional quantum Hall state without an applied uniform magnetic field?

- E. Tang, J. W. Mei, and X. G. Wen, Phys. Rev. Lett., 106, 236802 (2011).
- K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys. Rev. Lett., 106, 236803 (2011).
- T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett., 106, 236803 (2011).

Numerical answer: Yes!

- T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett., 106, 236803 (2011).
- D. N. Sheng, Z. Gu, K. Sun, and L. Sheng, arXiv:1102.2658.
- Y.-F. Wang, Z.-C. Gu, C.-D. Gong, D. N. Sheng, arXiv:1103.1686.
- N. Regnault and B. A. Bernevig, arXiv:1105.4867.
- T. Neupert, L. Santos, S. Ryu, C. Chamon, and C. Mudry, arXiv:1106.3989.
- D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, arXiv:1106.4296.

Question: Can band-flattening and interactions deliver a fractional quantum Hall state without an applied uniform magnetic field?

- E. Tang, J. W. Mei, and X. G. Wen, Phys. Rev. Lett., 106, 236802 (2011).
- K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys. Rev. Lett., 106, 236803 (2011).
- T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett., 106, 236803 (2011).

Numerical answer: Yes!

- T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett., 106, 236803 (2011).
- D. N. Sheng, Z. Gu, K. Sun, and L. Sheng, arXiv:1102.2658.
- Y.-F. Wang, Z.-C. Gu, C.-D. Gong, D. N. Sheng, arXiv:1103.1686.
- N. Regnault and B. A. Bernevig, arXiv:1105.4867.
- T. Neupert, L. Santos, S. Ryu, C. Chamon, and C. Mudry, arXiv:1106.3989.
- D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, arXiv:1106.4296.

Question: Can band-flattening and interactions deliver a fractional quantum Hall state without an applied uniform magnetic field?

- E. Tang, J. W. Mei, and X. G. Wen, Phys. Rev. Lett., 106, 236802 (2011).
- K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys. Rev. Lett., 106, 236803 (2011).
- T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett., 106, 236803 (2011).

Numerical answer: Yes!

- T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett., 106, 236803 (2011).
- D. N. Sheng, Z. Gu, K. Sun, and L. Sheng, arXiv:1102.2658.
- Y.-F. Wang, Z.-C. Gu, C.-D. Gong, D. N. Sheng, arXiv:1103.1686.
- N. Regnault and B. A. Bernevig, arXiv:1105.4867.
- T. Neupert, L. Santos, S. Ryu, C. Chamon, and C. Mudry, arXiv:1106.3989.
- D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, arXiv:1106.4296.

Analytical approaches: Wave functions

- B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
- X.-L. Qi, arXiv:1105.4298.
- L. Santos, T. Neupert, S. Ryu, C. Chamon, and C. Mudry, arXiv:1108.2440.
- Yuan-Ming Lu and Ying Ran, arXiv:1109.0226.

```
Analytical approaches: Algebraic
    - S. Parameswaran, R. Roy, and S. Sondhi, arXiv:1106.4025.
    - M. O. Goerbig, arXiv:1107.1986.
    - G. Murthy and R. Shankar, arXiv:1108.5501
```


Analytical approaches: Effective quantum field theories for time-reversal symmetric fractional topological insulators

- M. Levin and A. Stern, Phys. Rev. Lett. 103, 196803 (2009)
- T. Neupert, L. Santos, S. Ryu, C. Chamon, and C. Mudry, arXiv:1106.3989.
- L Santos T Neunert S Ryu C Chamon and C. Mudry arXiv-1108 2440
- Yuan-Ming Lu and Ying Ran, arXiv:1109.0226.

Analytical approaches: Wave functions

- B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
- X.-L. Qi, arXiv:1105.4298.
- L. Santos, T. Neupert, S. Ryu, C. Chamon, and C. Mudry, arXiv:1108.2440.
- Yuan-Ming Lu and Ying Ran, arXiv:1109.0226.

Analytical approaches: Algebraic

- S. Parameswaran, R. Roy, and S. Sondhi, arXiv:1106.4025.
- M. O. Goerbig, arXiv:1107.1986.
- G. Murthy and R. Shankar, arXiv:1108.5501.

Analytical approaches: Effective quantum field theories for time-reversal symmetric fractional topological insulators

- M. Levin and A. Stern, Phys. Rev. Lett. 103, 196803 (2009)
- T. Neupert, L. Santos, S. Ryu, C. Chamon, and C. Mudry, arXiv:1106.3989.
- L. Santos, T. Neupert, S. Ryu, C. Chamon, and C. Mudry, arXiv:1108.2440,
- Yuan-Ming Lu and Ying Ran, arXiv:1109.0226.

Analytical approaches: Wave functions

- B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
- X.-L. Qi, arXiv:1105.4298.
- L. Santos, T. Neupert, S. Ryu, C. Chamon, and C. Mudry, arXiv:1108.2440.
- Yuan-Ming Lu and Ying Ran, arXiv:1109.0226.

Analytical approaches: Algebraic

- S. Parameswaran, R. Roy, and S. Sondhi, arXiv:1106.4025.
- M. O. Goerbig, arXiv:1107.1986.
- G. Murthy and R. Shankar, arXiv:1108.5501.

Analytical approaches: Effective quantum field theories for time-reversal symmetric fractional topological insulators

- M. Levin and A. Stern, Phys. Rev. Lett. 103, 196803 (2009).
- T. Neupert, L. Santos, S. Ryu, C. Chamon, and C. Mudry, arXiv:1106.3989.
- L. Santos, T. Neupert, S. Ryu, C. Chamon, and C. Mudry, arXiv:1108.2440.
- Yuan-Ming Lu and Ying Ran, arXiv:1109.0226.

Analytical approaches: Wave functions

- B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
- X.-L. Qi, arXiv:1105.4298.
- L. Santos, T. Neupert, S. Ryu, C. Chamon, and C. Mudry, arXiv:1108.2440.
- Yuan-Ming Lu and Ying Ran, arXiv:1109.0226.

Analytical approaches: Algebraic

- S. Parameswaran, R. Roy, and S. Sondhi, arXiv:1106.4025.
- M. O. Goerbig, arXiv:1107.1986.
- G. Murthy and R. Shankar, arXiv:1108.5501.

Analytical approaches: Effective quantum field theories for time-reversal symmetric fractional topological insulators

- M. Levin and A. Stern, Phys. Rev. Lett. 103, 196803 (2009).
- T. Neupert, L. Santos, S. Ryu, C. Chamon, and C. Mudry, arXiv:1106.3989.
- L. Santos, T. Neupert, S. Ryu, C. Chamon, and C. Mudry, arXiv:1108.2440.
- Yuan-Ming Lu and Ying Ran, arXiv:1109.0226.
(2) Definition of the noninteracting lattice models
(3) Band flattening
(4) Definition of the interacting lattice model
(3) Fractional quantum Hall ground state

6 Numerical evidence thereof
(7) Fractional quantum spin Hall ground state

8 Numerical evidence thereof

Definition of the noninteracting lattice models

Let $\Lambda=A \cup B$ be a bipartite 2-dimensional lattice.

```
Example 1: Honeycomb lattice
Example 2: Square lattice
If spinless electrons are hopping so as to preserve the point group
sublattice symmetry of sublattice A, then
```



```
where BZ stands for the Brillouin zone of the A sublattice.
```


Definition of the noninteracting lattice models

Let $\Lambda=A \cup B$ be a bipartite 2-dimensional lattice.

Example 1: Honeycomb lattice

Example 2: Square lattice

If spinless electrons are hopping so as to preserve the point group sublattice symmetry of sublattice A, then

where BZ stands for the Brillouin zone of the A sublattice.

Definition of the noninteracting lattice models

Let $\Lambda=A \cup B$ be a bipartite 2-dimensional lattice.

Example 1: Honeycomb lattice

Example 2: Square lattice

If spinless electrons are hopping so as to preserve the point group sublattice symmetry of sublattice A, then

where BZ stands for the Brillouin zone of the A sublattice.

Definition of the noninteracting lattice models

Let $\Lambda=A \cup B$ be a bipartite 2-dimensional lattice.

Example 1: Honeycomb lattice

Example 2: Square lattice

If spinless electrons are hopping so as to preserve the point group sublattice symmetry of sublattice A, then

$$
H_{0}:=\sum_{\boldsymbol{k} \in \mathrm{BZ}} \psi_{\boldsymbol{k}}^{\dagger} \mathcal{H}_{\boldsymbol{k}} \psi_{\boldsymbol{k}}, \quad \mathcal{H}_{\boldsymbol{k}}:=B_{0, \boldsymbol{k}} \sigma_{0}+\boldsymbol{B}_{\boldsymbol{k}} \cdot \boldsymbol{\sigma}, \quad \psi_{\boldsymbol{k}}:=\binom{c_{\boldsymbol{k}, \mathrm{A}}}{c_{\boldsymbol{k}, \mathrm{B}}}
$$

where $B Z$ stands for the Brillouin zone of the A sublattice.

Chern numbers

If we define

$$
\widehat{\boldsymbol{B}}_{\boldsymbol{k}}:=\frac{\boldsymbol{B}_{\boldsymbol{k}}}{\left|\boldsymbol{B}_{\boldsymbol{k}}\right|}, \quad \tan \phi_{\boldsymbol{k}}:=\frac{\widehat{B}_{2, \boldsymbol{k}}}{\widehat{B}_{1, \boldsymbol{k}}}, \quad \cos \theta_{\boldsymbol{k}}:=\widehat{\boldsymbol{B}}_{3, \boldsymbol{k}},
$$

then eigenvalues and eigenvectors of Hamiltonian \mathcal{H}_{k} are

The first Chern-numbers for the bands labeled by \pm are

They have opposite signs if non-zero. All the information about the topology of the Bloch bands of a gaped system is encoded in the occupied single-particle Bloch wave functions. , a , A

Chern numbers

If we define

$$
\widehat{\boldsymbol{B}}_{\boldsymbol{k}}:=\frac{\boldsymbol{B}_{\boldsymbol{k}}}{\left|\boldsymbol{B}_{\boldsymbol{k}}\right|}, \quad \tan \phi_{\boldsymbol{k}}:=\frac{\widehat{B}_{2, \boldsymbol{k}}}{\widehat{B}_{1, \boldsymbol{k}}}, \quad \cos \theta_{\boldsymbol{k}}:=\widehat{B}_{3, \boldsymbol{k}},
$$

then eigenvalues and eigenvectors of Hamiltonian $\mathcal{H}_{\boldsymbol{k}}$ are

$$
\varepsilon_{ \pm, \boldsymbol{k}}=B_{0, \boldsymbol{k}} \pm\left|\boldsymbol{B}_{\boldsymbol{k}}\right|, \quad \chi_{+, \boldsymbol{k}}=\binom{e^{-i \phi_{k} / 2} \cos \frac{\theta_{k}}{\theta^{2}}}{e^{+i i_{k} / 2} \sin \frac{\theta_{k}}{2}}, \quad \chi_{-, \boldsymbol{k}}=\binom{e^{-i \phi_{\boldsymbol{k}} / 2} \sin \frac{\theta_{k}}{2}}{-e^{-i i_{k} / 2} \cos \frac{\theta_{k}}{2}} .
$$

The first Chern-numbers for the bands labeled by \pm are

They have opposite signs if non-zero. All the information about the topology of the Bloch bands of a gaped system is encoded in the

Chern numbers

If we define

$$
\widehat{\boldsymbol{B}}_{\boldsymbol{k}}:=\frac{\boldsymbol{B}_{\boldsymbol{k}}}{\left|\boldsymbol{B}_{\boldsymbol{k}}\right|}, \quad \tan \phi_{\boldsymbol{k}}:=\frac{\widehat{\boldsymbol{B}}_{2, \boldsymbol{k}}}{\widehat{B}_{1, \boldsymbol{k}}}, \quad \cos \theta_{\boldsymbol{k}}:=\widehat{B}_{3, \boldsymbol{k}},
$$

then eigenvalues and eigenvectors of Hamiltonian $\mathcal{H}_{\boldsymbol{k}}$ are
$\varepsilon_{ \pm, \boldsymbol{k}}=B_{0, \boldsymbol{k}} \pm\left|\boldsymbol{B}_{\boldsymbol{k}}\right|, \quad \chi_{+, \boldsymbol{k}}=\binom{e^{-i \phi_{k} / 2} \cos \frac{\theta_{\boldsymbol{k}}}{\theta_{2}}}{e^{+i i_{k} / 2} \sin \frac{\theta_{k}}{2}}, \quad \chi_{-, \boldsymbol{k}}=\binom{e^{-i \phi_{k} / 2} \sin \frac{\theta_{k}}{2}}{-e^{-i \phi_{\boldsymbol{k}} / 2} \cos \frac{\theta_{k}}{2}}$.
The first Chern-numbers for the bands labeled by \pm are

$$
\boldsymbol{C}_{ \pm}=\mp \int_{\boldsymbol{k} \in \mathrm{BZ}} \frac{\mathrm{~d}^{2} \boldsymbol{k}}{4 \pi} \epsilon_{\mu \nu}\left[\partial_{\kappa_{\mu}} \cos \theta(\boldsymbol{k})\right]\left[\partial_{\kappa_{\nu}} \phi(\boldsymbol{k})\right] .
$$

They have opposite signs if non-zero. All the information about the topology of the Bloch bands of a gaped system is encoded in the

Chern numbers

If we define

$$
\widehat{\boldsymbol{B}}_{\boldsymbol{k}}:=\frac{\boldsymbol{B}_{\boldsymbol{k}}}{\left|\boldsymbol{B}_{\boldsymbol{k}}\right|}, \quad \tan \phi_{\boldsymbol{k}}:=\frac{\widehat{B}_{2, \boldsymbol{k}}}{\widehat{B}_{1, \boldsymbol{k}}}, \quad \cos \theta_{\boldsymbol{k}}:=\widehat{\boldsymbol{B}}_{3, \boldsymbol{k}},
$$

then eigenvalues and eigenvectors of Hamiltonian $\mathcal{H}_{\boldsymbol{k}}$ are
$\varepsilon_{ \pm, \boldsymbol{k}}=B_{0, \boldsymbol{k}} \pm\left|\boldsymbol{B}_{\boldsymbol{k}}\right|, \quad \chi_{+, \boldsymbol{k}}=\binom{e^{-i \phi_{k} / 2} \cos \frac{\theta_{\boldsymbol{k}}}{\theta_{2}}}{e^{+i i_{k} / 2} \sin \frac{\theta_{k}}{2}}, \quad \chi_{-, \boldsymbol{k}}=\binom{e^{-i \phi_{k} / 2} \sin \frac{\theta_{k}}{2}}{-e^{-i \phi_{\boldsymbol{k}} / 2} \cos \frac{\theta_{k}}{2}}$.
The first Chern-numbers for the bands labeled by \pm are

$$
\boldsymbol{C}_{ \pm}=\mp \int_{\boldsymbol{k} \in \mathrm{BZ}} \frac{\mathrm{~d}^{2} \boldsymbol{k}}{4 \pi} \epsilon_{\mu \nu}\left[\partial_{\kappa_{\mu}} \cos \theta(\boldsymbol{k})\right]\left[\partial_{\kappa_{\nu}} \phi(\boldsymbol{k})\right] .
$$

They have opposite signs if non-zero.

Chern numbers

If we define

$$
\widehat{\boldsymbol{B}}_{\boldsymbol{k}}:=\frac{\boldsymbol{B}_{\boldsymbol{k}}}{\left|\boldsymbol{B}_{\boldsymbol{k}}\right|}, \quad \tan \phi_{\boldsymbol{k}}:=\frac{\widehat{\boldsymbol{B}}_{2, \boldsymbol{k}}}{\widehat{B}_{1, \boldsymbol{k}}}, \quad \cos \theta_{\boldsymbol{k}}:=\widehat{B}_{3, \boldsymbol{k}},
$$

then eigenvalues and eigenvectors of Hamiltonian $\mathcal{H}_{\boldsymbol{k}}$ are
$\varepsilon_{ \pm, \boldsymbol{k}}=B_{0, \boldsymbol{k}} \pm\left|\boldsymbol{B}_{\boldsymbol{k}}\right|, \quad \chi_{+, \boldsymbol{k}}=\binom{e^{-\mathrm{i} \phi_{k} / 2} \cos \frac{\theta_{\boldsymbol{k}}}{\varepsilon_{2}}}{e^{+i i_{k} / 2} \sin \frac{\theta_{k}}{2}}, \quad \chi_{-, \boldsymbol{k}}=\binom{e^{-\mathrm{i} \phi_{\boldsymbol{k}} / 2} \sin \frac{\theta_{\boldsymbol{k}}}{2}}{-e^{-\mathrm{i} \phi_{\boldsymbol{k}} / 2} \cos \frac{\theta_{k}}{2}}$.
The first Chern-numbers for the bands labeled by \pm are

$$
\boldsymbol{C}_{ \pm}=\mp \int_{\boldsymbol{k} \in \mathrm{BZ}} \frac{\mathrm{~d}^{2} \boldsymbol{k}}{4 \pi} \epsilon_{\mu \nu}\left[\partial_{k_{\mu}} \cos \theta(\boldsymbol{k})\right]\left[\partial_{\kappa_{\nu}} \phi(\boldsymbol{k})\right] .
$$

They have opposite signs if non-zero. All the information about the topology of the Bloch bands of a gaped system is encoded in the occupied single-particle Bloch wave functions.

Example 1: Honeycomb lattice (Haldane 1988)

If the NN hopping
amplitude, $t_{1}>0$, is positive (solid lines) and the NNN hopping amplitude are $t_{2} e^{\mathrm{i} 2 \pi \Phi / \Phi_{0}}$, with $t_{2} \geq 0$, in the direction of the arrow (dotted lines),

Example 1: Honeycomb lattice (Haldane 1988)

If the NN hopping amplitude, $t_{1}>0$, is positive (solid lines)
hopping amplitude are
$t_{2} e^{\mathrm{i} 2 \pi \Phi / \Phi_{0}}$, with $t_{2} \geq 0$, in the
direction of the arrow
(dotted lines),

Example 1: Honeycomb lattice (Haldane 1988)

If the NN hopping amplitude, $t_{1}>0$, is positive (solid lines) and the NNN hopping amplitude are $t_{2} e^{\mathrm{i} 2 \pi \Phi / \Phi_{0}}$, with $t_{2} \geq 0$, in the direction of the arrow (dotted lines),

Example 1: Honeycomb lattice (Haldane 1988)

then
$\left(\cos \Phi=t_{1} /\left(4 t_{2}\right)=3 \sqrt{3 / 43}\right.$ with the lower-band flatness ratio 1/7)

$$
\begin{aligned}
& B_{0, \boldsymbol{k}}:=2 t_{2} \cos \Phi \sum_{i=1}^{3} \cos \boldsymbol{k} \cdot \boldsymbol{b}_{\boldsymbol{i}}, \\
& \boldsymbol{B}_{\boldsymbol{k}}:=\sum_{i=1}^{3}\left(\begin{array}{c}
t_{1} \cos \boldsymbol{k} \cdot \boldsymbol{a}_{\boldsymbol{i}} \\
t_{1} \sin \boldsymbol{k} \cdot \boldsymbol{a}_{\boldsymbol{i}} \\
-2 t_{2} \sin \Phi \sin \boldsymbol{k} \cdot \boldsymbol{b}_{\boldsymbol{i}}
\end{array}\right)
\end{aligned}
$$

Example 2: Square lattice (Wen, Wilczek, and Zee 1989)

If the NN hopping
amplitudes are $t_{1} e^{i \pi / 4}$, with $t_{1}>0$, in the direction of the arrow (solid lines) and the NNN hopping amplitudes are $t_{2} \geq 0$ and $-t_{2}$ along the dashed and dotted lines, respectively.

then

Example 2: Square lattice (Wen, Wilczek, and Zee 1989)

If the NN hopping
amplitudes are $t_{1} e^{i \pi / 4}$, with $t_{1}>0$, in the direction of the arrow (solid lines)

then

Example 2: Square lattice (Wen, Wilczek, and Zee 1989)

If the NN hopping amplitudes are $t_{1} e^{i \pi / 4}$, with $t_{1}>0$, in the direction of the arrow (solid lines) and the NNN hopping amplitudes are $t_{2} \geq 0$ and $-t_{2}$ along the dashed and dotted lines, respectively.

then

Example 2: Square lattice (Wen, Wilczek, and Zee 1989)

then

$$
\begin{aligned}
& B_{0, \boldsymbol{k}}:=0, \\
& B_{1, \boldsymbol{k}}+\mathrm{i} B_{2, \boldsymbol{k}}:=t_{1} e^{-\mathrm{i} \pi / 4}[1+ \\
& \left.e^{+\mathrm{i}\left(k_{y}-k_{x}\right)}\right]+t_{1} e^{+\mathrm{i} \pi / 4}\left[e^{-\mathrm{i} k_{x}}+\right. \\
& \left.e^{+i k_{y}}\right], \\
& B_{3, \boldsymbol{k}}:=2 t_{2}\left(\cos k_{x}-\cos k_{y}\right),
\end{aligned}
$$

If the NN hopping amplitudes are $t_{1} e^{i \pi / 4}$, with $t_{1}>0$, in the direction of the arrow (solid lines) and the NNN hopping amplitudes are $t_{2} \geq 0$ and $-t_{2}$ along the dashed and dotted lines, respectively.
$\left(t_{1} / t_{2}=\sqrt{2}\right.$ with the flatness ratio $\left.1 / 5\right)$

(1) Introduction

Definition of the noninteracting lattice models
(3) Band flattening
4. Definition of the interacting lattice model
(5) Fractional quantum Hall ground state

- Numerical evidence thereof
(7) Fractional quantum spin Hall ground state
- Numerical evidence thereof
(9) Summary

Band flattening

Band-flattening is defined by

$$
\mathcal{H}_{\boldsymbol{k}}^{\text {flat }}:=\frac{\mathcal{H}_{\boldsymbol{k}}}{\varepsilon_{-, \boldsymbol{k}}} .
$$

Let there be N sites on sublattice A and N sites on sublattice B.

We fix the number of spinless fermions to be N (half-filled $\Lambda:=A \cup B$).
Before band-flattening, the half-filled groundstate is

After band-flattening, the half-filled groundstate has not changed, for all single-particle Bloch states are unchanged under band flattening.

Band flattening

Band-flattening is defined by

$$
\mathcal{H}_{k}^{\text {flat }}:=\frac{\mathcal{H}_{k}}{\varepsilon_{-, k}} .
$$

Let there be N sites on sublattice A and N sites on sublattice B .
We fix the number of spinless fermions to be N (half-filled $\wedge:=A \cup B$).
Before band-flattening, the half-filled groundstate is

After band-flattening, the half-filled groundstate has not changed, for all single-particle Bloch states are unchanged under band flattening.

Band flattening

Band-flattening is defined by

$$
\mathcal{H}_{\boldsymbol{k}}^{\text {flat }}:=\frac{\mathcal{H}_{\boldsymbol{k}}}{\varepsilon_{-, \boldsymbol{k}}}
$$

Let there be N sites on sublattice A and N sites on sublattice B .
We fix the number of spinless fermions to be N (half-filled $\Lambda:=\mathrm{A} \cup \mathrm{B}$).
Before band-flattening, the half-filled groundstate is

After band-flattening, the half-filled groundstate has not changed, for all single-particle Bloch states are unchanged under band flattening.

Band flattening

Band-flattening is defined by

$$
\mathcal{H}_{\boldsymbol{k}}^{\text {flat }}:=\frac{\mathcal{H}_{\boldsymbol{k}}}{\varepsilon_{-, \boldsymbol{k}}}
$$

Let there be N sites on sublattice A and N sites on sublattice B .
We fix the number of spinless fermions to be N (half-filled $\Lambda:=\mathrm{A} \cup \mathrm{B}$).
Before band-flattening, the half-filled groundstate is

$$
\left\langle\boldsymbol{r}_{1}, \cdots, \boldsymbol{r}_{N} \mid \boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{N}\right\rangle=\operatorname{det}\left(\begin{array}{ccc}
e^{\mathrm{i} \boldsymbol{k}_{1} \cdot \boldsymbol{r}_{1}} \chi_{-, \boldsymbol{k}_{1}} & \cdots & e^{\mathrm{i} \boldsymbol{k}_{N} \cdot \boldsymbol{r}_{1}} \chi_{-, \boldsymbol{k}_{N}} \\
\vdots & \vdots & \vdots \\
e^{\mathrm{i} \boldsymbol{k}_{1} \cdot \boldsymbol{r}_{N}} \chi_{-, \boldsymbol{k}_{1}}, & \cdots & e^{\mathrm{i} \boldsymbol{k}_{N} \cdot \boldsymbol{r}_{N} \chi_{-, \boldsymbol{k}_{N}}}
\end{array}\right)
$$

After band-flattening, the half-filled groundstate has not changed, for all single-particle Bloch states are unchanged under band flattening.

Band flattening

Band-flattening is defined by

$$
\mathcal{H}_{\boldsymbol{k}}^{\text {flat }}:=\frac{\mathcal{H}_{\boldsymbol{k}}}{\varepsilon_{-, \boldsymbol{k}}}
$$

Let there be N sites on sublattice A and N sites on sublattice B .
We fix the number of spinless fermions to be N (half-filled $\Lambda:=\mathrm{A} \cup \mathrm{B}$).
Before band-flattening, the half-filled groundstate is

$$
\left\langle\boldsymbol{r}_{1}, \cdots, \boldsymbol{r}_{N} \mid \boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{N}\right\rangle=\operatorname{det}\left(\begin{array}{ccc}
e^{\mathrm{i} \boldsymbol{k}_{1} \cdot \boldsymbol{r}_{1}} \chi_{-, \boldsymbol{k}_{1}} & \cdots & e^{\mathrm{i} \boldsymbol{k}_{N} \cdot \boldsymbol{r}_{1}} \chi_{-, \boldsymbol{k}_{N}} \\
\vdots & \vdots & \vdots \\
e^{\mathrm{i} \boldsymbol{k}_{1} \cdot \boldsymbol{r}_{N}} \chi_{-, \boldsymbol{k}_{1}}, & \cdots & e^{\mathrm{i} \boldsymbol{k}_{N} \cdot \boldsymbol{r}_{N} \chi_{-, \boldsymbol{k}_{N}}}
\end{array}\right)
$$

After band-flattening, the half-filled groundstate has not changed,
all single-particle Bloch states are unchanged under band flattening.

Band flattening

Band-flattening is defined by

$$
\mathcal{H}_{\boldsymbol{k}}^{\text {flat }}:=\frac{\mathcal{H}_{\boldsymbol{k}}}{\varepsilon_{-, \boldsymbol{k}}}
$$

Let there be N sites on sublattice A and N sites on sublattice B .
We fix the number of spinless fermions to be N (half-filled $\Lambda:=\mathrm{A} \cup \mathrm{B}$).
Before band-flattening, the half-filled groundstate is

$$
\left\langle\boldsymbol{r}_{1}, \cdots, \boldsymbol{r}_{N} \mid \boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{N}\right\rangle=\operatorname{det}\left(\begin{array}{ccc}
e^{\mathrm{i} \boldsymbol{k}_{1} \cdot \boldsymbol{r}_{1}} \chi_{-, \boldsymbol{k}_{1}} & \cdots & e^{\mathrm{i} \boldsymbol{k}_{N} \cdot \boldsymbol{r}_{1}} \chi_{-, \boldsymbol{k}_{N}} \\
\vdots & \vdots & \vdots \\
e^{\mathrm{i} \boldsymbol{k}_{1} \cdot \boldsymbol{r}_{N}} \chi_{-, \boldsymbol{k}_{1}}, & \cdots & e^{\mathrm{i} \boldsymbol{k}_{N} \cdot \boldsymbol{r}_{N} \chi_{-, \boldsymbol{k}_{N}}}
\end{array}\right)
$$

After band-flattening, the half-filled groundstate has not changed, for all single-particle Bloch states are unchanged under band flattening.

Band flattening preserves locality

Let

$$
\mathcal{O}_{n}(x):=\sum_{i \in \Lambda} a_{n, i} \delta\left(x-\boldsymbol{r}_{i}\right), \quad n=1,2,
$$

be any pair of two Hermitean local operators.
Define

The correlation function

must decay exponentially before and after band flattening, for neither the existence of the single-particle gap Δ nor the eigenfunctions are affected by the band flattening.

Band flattening preserves locality

Let

$$
\mathcal{O}_{n}(\boldsymbol{x}):=\sum_{i \in \Lambda} a_{n, i} \delta\left(\boldsymbol{x}-\boldsymbol{r}_{i}\right), \quad n=1,2,
$$

be any pair of two Hermitean local operators.
Define

$$
C_{\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{N}}^{(1,2)}(\boldsymbol{x}, \boldsymbol{y}):=\left\langle\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{N}\right| \mathcal{O}_{1}(\boldsymbol{x}) \mathcal{O}_{2}(\boldsymbol{y})\left|\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{N}\right\rangle
$$

The correlation function

must decay exponentially before and after band flattening, for neither the existence of the single-particle gap Δ nor the eigenfunctions are affected by the band flattening.

Band flattening preserves locality

Let

$$
\mathcal{O}_{n}(x):=\sum_{i \in \Lambda} a_{n, i} \delta\left(x-\boldsymbol{r}_{i}\right), \quad n=1,2,
$$

be any pair of two Hermitean local operators.
Define

$$
C_{\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{N}}^{(1,2)}(\boldsymbol{x}, \boldsymbol{y}):=\left\langle\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{N}\right| \mathcal{O}_{1}(\boldsymbol{x}) \mathcal{O}_{2}(\boldsymbol{y})\left|\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{N}\right\rangle
$$

The correlation function

$$
C^{(1,2)}(x, y) \propto e^{-\Delta|x-y|}
$$

must decay exponentially before and after band flattening,

Band flattening preserves locality

Let

$$
\mathcal{O}_{n}(x):=\sum_{i \in \Lambda} a_{n, i} \delta\left(x-\boldsymbol{r}_{i}\right), \quad n=1,2,
$$

be any pair of two Hermitean local operators.
Define

$$
C_{\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{N}}^{(1,2)}(\boldsymbol{x}, \boldsymbol{y}):=\left\langle\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{N}\right| \mathcal{O}_{1}(\boldsymbol{x}) \mathcal{O}_{2}(\boldsymbol{y})\left|\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{N}\right\rangle
$$

The correlation function

$$
C^{(1,2)}(x, y) \propto e^{-\Delta|x-y|}
$$

must decay exponentially before and after band flattening, for neither the existence of the single-particle gap Δ nor the eigenfunctions are affected by the band flattening.
(3) Definition of the noninteracting lattice models
(3) Band flattening
(4) Definition of the interacting lattice model
(5) Fractional quantum Hall ground state

6 Numerical evidence thereof
(7) Fractional quantum spin Hall ground state
(8) Numerical evidence thereof
(9) Summary
C. Mudry (PSI)

Fractional topological insulators

Definition of the interacting lattice model

Define the many-body Hamiltonian

$$
H:=H_{0}^{\text {flat }}+H_{\text {int }}
$$

where

$$
H_{\text {int }}:=\frac{1}{2} \sum_{i, j \in \Lambda} \rho_{i} V_{i, j} \rho_{j} \equiv V \sum_{\langle i j\rangle} \rho_{i} \rho_{j}, \quad V>0,
$$

and ρ_{i} is the occupation number on the site $i \in \Lambda:=\mathrm{A} \cup \mathrm{B}$ of the square lattice.

Define the filling fraction ν to be the ratio
where N_{f} is the number of spinless fermions and N the number of sites in sublattice A of the square lattice.

Definition of the interacting lattice model

Define the many-body Hamiltonian

$$
H:=H_{0}^{\text {flat }}+H_{\text {int }}
$$

where

$$
H_{\mathrm{int}}:=\frac{1}{2} \sum_{i, j \in \Lambda} \rho_{i} V_{i, j} \rho_{j} \equiv V \sum_{\langle i j\rangle} \rho_{i} \rho_{j}, \quad V>0
$$

and ρ_{i} is the occupation number on the site $i \in \Lambda:=\mathrm{A} \cup \mathrm{B}$ of the square lattice.

Define the filling fraction ν to be the ratio

$$
\nu:=\frac{N_{\mathrm{f}}}{N}
$$

where N_{f} is the number of spinless fermions and N the number of sites in sublattice A of the square lattice.

2 Definition of the noninteracting lattice models
(3) Band flattening
(4) Definition of the interacting lattice model
(5) Fractional quantum Hall ground state

6 Numerical evidence thereof
(7) Fractional quantum spin Hall ground state

- Numerical evidence thereof
(2) Summary

Fractional quantum Hall ground state

Three distinctive properties of a fractional quantum Hall ground state at filling fraction $\nu<1$ (where ν^{-1} is an odd integer) and with periodic boundary conditions (toroidal geometry) are

- the existence of a spectral gap above the ground state manifold,
- the ν^{-1}-fold topological degeneracy of the ground state manifold
in the thermodynamic limit,
- and the quantization ν of the Hall conductance $\sigma_{x y}$ in units of $\nu e^{2} / h$.

Fractional quantum Hall ground state

Three distinctive properties of a fractional quantum Hall ground state at filling fraction $\nu<1$ (where ν^{-1} is an odd integer) and with periodic boundary conditions (toroidal geometry) are

- the existence of a spectral gap above the ground state manifold,
- the ν^{-1}-fold topological degeneracy of the ground state manifold
in the thermodynamic limit,
- and the quantization ν of the Hall conductance $\sigma_{x y}$ in units of $\nu e^{2} / h$.

Fractional quantum Hall ground state

Three distinctive properties of a fractional quantum Hall ground state at filling fraction $\nu<1$ (where ν^{-1} is an odd integer) and with periodic boundary conditions (toroidal geometry) are

- the existence of a spectral gap above the ground state manifold,
- the ν^{-1}-fold topological degeneracy of the ground state manifold in the thermodynamic limit,
- and the quantization ν of the Hall conductance $\sigma_{x y}$ in units of $\nu e^{2} / h$.

Fractional quantum Hall ground state

Three distinctive properties of a fractional quantum Hall ground state at filling fraction $\nu<1$ (where ν^{-1} is an odd integer) and with periodic boundary conditions (toroidal geometry) are

- the existence of a spectral gap above the ground state manifold,
- the ν^{-1}-fold topological degeneracy of the ground state manifold in the thermodynamic limit,
- and the quantization ν of the Hall conductance $\sigma_{x y}$ in units of $\nu e^{2} / h$.

2 Definition of the noninteracting lattice models

- Band flattening

4. Definition of the interacting lattice model
(Fractional quantum Hall ground state
(6) Numerical evidence thereof
(7) Fractional quantum spin Hall ground state
(8) Numerical evidence thereof

- Summary

Spectral gap if $N=3 \times 6$ and $N_{f}=6$, i.e., $\nu=1 / 3$

Add a sublattice-staggered chemical potential $4 \mu_{\mathrm{s}}$ to the single-particle Hamiltonian by replacing $B_{3, k} \rightarrow B_{3, k}+4 \mu_{\mathrm{s}}$.

to the interacting band width E_{b}. The gap is of order V when $q=0$

Spectral gap if $N=3 \times 6$ and $N_{\mathrm{f}}=6$, i.e., $\nu=1 / 3$

Add a sublattice-staggered chemical potential $4 \mu_{\mathrm{s}}$ to the single-particle Hamiltonian by replacing $B_{3, k} \rightarrow B_{3, k}+4 \mu_{\mathrm{s}}$.
The parameters t_{2} and μ_{s} of $H_{0}^{\text {flat }}$ interpolate between topological $\left(\left|t_{2}\right|>\left|\mu_{\mathrm{s}}\right|\right)$ and non-topological $\left(\left|t_{2}\right|<\left|\mu_{\mathrm{s}}\right|\right)$ single-particle bands.

Here, $g:=(2 / \pi) \arctan \left|t_{2} / \mu_{s}\right|$ and all energies are measured relative

Spectral gap if $N=3 \times 6$ and $N_{\mathrm{f}}=6$, i.e., $\nu=1 / 3$

Add a sublattice-staggered chemical potential $4 \mu_{\mathrm{s}}$ to the single-particle Hamiltonian by replacing $B_{3, k} \rightarrow B_{3, k}+4 \mu_{\mathrm{s}}$.
The parameters t_{2} and μ_{s} of $H_{0}^{\text {flat }}$ interpolate between topological $\left(\left|t_{2}\right|>\left|\mu_{\mathrm{s}}\right|\right)$ and non-topological $\left(\left|t_{2}\right|<\left|\mu_{\mathrm{s}}\right|\right)$ single-particle bands.

Here, $g:=(2 / \pi) \arctan \left|t_{2} / \mu_{\mathrm{s}}\right|$ and all energies are measured relative to the interacting band width E_{b}. The gap is of order V when $g=0$.

Topological degeneracy if $N=3 \times 6$ and $N_{\mathrm{f}}=6$

 Impose the twisted boundary conditions$$
\left|\Psi_{\gamma}\left(\boldsymbol{r}+N_{x} \boldsymbol{x}\right)\right\rangle=e^{i \boldsymbol{i}_{x}}\left|\Psi_{\gamma}(\boldsymbol{r})\right\rangle, \quad\left|\Psi_{\gamma}\left(\boldsymbol{r}+N_{y} \boldsymbol{y}\right)\right\rangle=e^{i \gamma_{y}}\left|\Psi_{\gamma}(\boldsymbol{r})\right\rangle
$$

where $\gamma^{t}=\left(\gamma_{x}, \gamma_{y}\right)$ are the twisting angles and $N_{x} \times N_{y}=N$ the number of unit cells.

Due to translational invariance, the Hamiltonian does not couple states with different center of mass momenta $\boldsymbol{Q}:=\boldsymbol{k}_{1}+\ldots+\boldsymbol{k}_{N_{\mathrm{t}}}$, where $\boldsymbol{k}_{i}, i=1, \cdots, N_{\mathrm{f}}$ are the single-particle momenta of an N_{f}-particle state.

At $1 / 3$ filling of the 3×6 sublattice A, the particle number $N_{f}=6$ is commensurate with the lattice dimensions and all three topological states have the same Q.

As a consequence, their topological degeneracy is lifted and a unique ground state appears.

Topological degeneracy if $N=3 \times 6$ and $N_{\mathrm{f}}=6$

 Impose the twisted boundary conditions$$
\left|\Psi_{\gamma}\left(\boldsymbol{r}+N_{x} \boldsymbol{x}\right)\right\rangle=e^{\mathrm{i} \gamma_{x}}\left|\Psi_{\gamma}(\boldsymbol{r})\right\rangle, \quad\left|\Psi_{\gamma}\left(\boldsymbol{r}+N_{y} \boldsymbol{y}\right)\right\rangle=e^{\mathrm{i} \gamma_{y}}\left|\Psi_{\gamma}(\boldsymbol{r})\right\rangle
$$

where $\gamma^{t}=\left(\gamma_{x}, \gamma_{y}\right)$ are the twisting angles and $N_{x} \times N_{y}=N$ the number of unit cells.

Due to translational invariance, the Hamiltonian does not couple states with different center of mass momenta $\boldsymbol{Q}:=\boldsymbol{k}_{1}+\ldots+\boldsymbol{k}_{N_{\mathrm{f}}}$, where $\boldsymbol{k}_{i}, i=1, \cdots, N_{\mathrm{f}}$ are the single-particle momenta of an N_{f}-particle state.
commensurate with the lattice dimensions and all three topological
states have the same \boldsymbol{Q}.
As a consequence, their topological degeneracy is lifted and a unique ground state appears.

Topological degeneracy if $N=3 \times 6$ and $N_{\mathrm{f}}=6$

 Impose the twisted boundary conditions$$
\left|\Psi_{\gamma}\left(\boldsymbol{r}+N_{x} \boldsymbol{x}\right)\right\rangle=e^{\mathrm{i} \gamma_{x}}\left|\Psi_{\gamma}(\boldsymbol{r})\right\rangle, \quad\left|\Psi_{\gamma}\left(\boldsymbol{r}+N_{y} \boldsymbol{y}\right)\right\rangle=e^{\mathrm{i} \gamma_{y}}\left|\Psi_{\gamma}(\boldsymbol{r})\right\rangle
$$

where $\gamma^{t}=\left(\gamma_{x}, \gamma_{y}\right)$ are the twisting angles and $N_{x} \times N_{y}=N$ the number of unit cells.

Due to translational invariance, the Hamiltonian does not couple states with different center of mass momenta $\boldsymbol{Q}:=\boldsymbol{k}_{1}+\ldots+\boldsymbol{k}_{N_{\mathrm{f}}}$, where $\boldsymbol{k}_{i}, i=1, \cdots, N_{\mathrm{f}}$ are the single-particle momenta of an N_{f}-particle state.

At $1 / 3$ filling of the 3×6 sublattice A, the particle number $N_{f}=6$ is commensurate with the lattice dimensions and all three topological states have the same \boldsymbol{Q}.

As a consequence, their topological degeneracy is lifted and a unique ground state appears.

Topological degeneracy if $N=3 \times 6$ and $N_{\mathrm{f}}=6$

 Impose the twisted boundary conditions$$
\left|\Psi_{\gamma}\left(\boldsymbol{r}+N_{x} \boldsymbol{x}\right)\right\rangle=e^{\mathrm{i} \gamma_{x}}\left|\Psi_{\gamma}(\boldsymbol{r})\right\rangle, \quad\left|\Psi_{\gamma}\left(\boldsymbol{r}+N_{y} \boldsymbol{y}\right)\right\rangle=e^{\mathrm{i} \gamma_{y}}\left|\Psi_{\gamma}(\boldsymbol{r})\right\rangle
$$

where $\gamma^{t}=\left(\gamma_{x}, \gamma_{y}\right)$ are the twisting angles and $N_{x} \times N_{y}=N$ the number of unit cells.

Due to translational invariance, the Hamiltonian does not couple states with different center of mass momenta $\boldsymbol{Q}:=\boldsymbol{k}_{1}+\ldots+\boldsymbol{k}_{N_{\mathrm{f}}}$, where $\boldsymbol{k}_{i}, i=1, \cdots, N_{\mathrm{f}}$ are the single-particle momenta of an N_{f}-particle state.

At $1 / 3$ filling of the 3×6 sublattice A, the particle number $N_{f}=6$ is commensurate with the lattice dimensions and all three topological states have the same \boldsymbol{Q}.

As a consequence, their topological degeneracy is lifted and a unique ground state appears.

We can now use twisted boundary conditions to probe the topological nature of the ground state:

f a flux quantum in the system

During this process, a topological ground state with $\sigma_{x y} \times h / e^{2}=1 / 3$ should undergo two level crossings with the other two gaped topological states (Thouless 1989)

We can now use twisted boundary conditions to probe the topological nature of the ground state: varying γ_{x} between 0 and 2π is equivalent to the adiabatic insertion of a flux quantum in the system.

During this process, a topological ground state with $\sigma_{x y} \times h / e^{2}=1 / 3$ should undergo two level crossings with the other two gaped topological states (Thouless 1989)

We can now use twisted boundary conditions to probe the topological nature of the ground state: varying γ_{x} between 0 and 2π is equivalent to the adiabatic insertion of a flux quantum in the system.

During this process, a topological ground state with $\sigma_{x y} \times h / e^{2}=1 / 3$ should undergo two level crossings with the other two gaped topological states (Thouless 1989).

Hall conductance if $N=3 \times 6$ and $N_{f}=6$
The Hall conductance $\sigma_{x y}$ is related to the Chern-number C of the many-body ground state $|\Psi\rangle$ as

$$
\sigma_{x y}=C e^{2} / h
$$

where (Niu and Thouless 1984)

$$
C:=\frac{1}{2 \pi \mathrm{i}} \quad \int \mathrm{~d}^{2} \gamma \nabla_{\gamma} \wedge\left\langle\Psi_{\gamma}\right| \nabla_{\gamma}\left|\Psi_{\gamma}\right\rangle .
$$

Alternatively, we introduce

where $n_{-, k}=\langle\Psi| C_{-, k}^{\dagger} C_{-, k}|\Psi\rangle$ is the occupation number of the single-particle Bloch state in the lower $(-)$ band with wave vector k evaluated in the many-body ground state.
It can be shown that $C=C$.

Hall conductance if $N=3 \times 6$ and $N_{f}=6$

The Hall conductance $\sigma_{x y}$ is related to the Chern-number C of the many-body ground state $|\Psi\rangle$ as

$$
\sigma_{x y}=C e^{2} / h
$$

where (Niu and Thouless 1984)

$$
C:=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma \in[0,2 \pi]^{2}} \mathrm{~d}^{2} \gamma \nabla_{\gamma} \wedge\left\langle\psi_{\gamma}\right| \nabla_{\gamma}\left|\Psi_{\gamma}\right\rangle .
$$

Alternatively, we introduce

$$
\tilde{C}=\frac{1}{2 \pi \mathrm{i}} \int_{\boldsymbol{k} \in \mathrm{BZ}} \mathrm{~d}^{2} \boldsymbol{k} n_{-, \boldsymbol{k}}\left[\nabla_{\boldsymbol{k}} \wedge\left(\chi_{-, \boldsymbol{k}}^{\dagger} \nabla_{\boldsymbol{k}} \chi_{-, \boldsymbol{k}}\right)\right]
$$

where $n_{-, \boldsymbol{k}}=\langle\Psi| c_{-, k}^{\dagger} c_{-, \boldsymbol{k}}|\Psi\rangle$ is the occupation number of the single-particle Bloch state in the lower (-) band with wave vector \boldsymbol{k} evaluated in the many-body ground state.

Hall conductance if $N=3 \times 6$ and $N_{f}=6$

The Hall conductance $\sigma_{x y}$ is related to the Chern-number C of the many-body ground state $|\Psi\rangle$ as

$$
\sigma_{x y}=C e^{2} / h
$$

where (Niu and Thouless 1984)

$$
C:=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma \in[0,2 \pi]^{2}} \mathrm{~d}^{2} \gamma \nabla_{\gamma} \wedge\left\langle\psi_{\gamma}\right| \nabla_{\gamma}\left|\Psi_{\gamma}\right\rangle .
$$

Alternatively, we introduce

$$
\tilde{C}=\frac{1}{2 \pi \mathrm{i}} \int_{\boldsymbol{k} \in \mathrm{BZ}} \mathrm{~d}^{2} \boldsymbol{k} n_{-, \boldsymbol{k}}\left[\nabla_{\boldsymbol{k}} \wedge\left(\chi_{-, \boldsymbol{k}}^{\dagger} \nabla_{\boldsymbol{k}} \chi_{-, \boldsymbol{k}}\right)\right]
$$

where $n_{-, \boldsymbol{k}}=\langle\Psi| c_{-, k}^{\dagger} c_{-, k}|\Psi\rangle$ is the occupation number of the single-particle Bloch state in the lower (-) band with wave vector \boldsymbol{k} evaluated in the many-body ground state. It can be shown that $C=\tilde{C}$.

When $\mu_{\mathrm{s}}=0, t_{2}=t_{1} / \sqrt{2}$, we find $C=0.29$ and $\widetilde{C}=0.30$ and attribute the deviations from $C=1 / 3$ to finite-size effects.

When $\mu_{\mathrm{s}}=t_{1} / \sqrt{2}, t_{2}=0$, we find that C and C vanish to a precision of and 10^{-3}, respectively.

When $\mu_{\mathrm{s}}=0, t_{2}=t_{1} / \sqrt{2}$, we find $C=0.29$ and $\widetilde{C}=0.30$ and attribute the deviations from $C=1 / 3$ to finite-size effects.

When $\mu_{\mathrm{s}}=t_{1} / \sqrt{2}, t_{2}=0$, we find that C and \tilde{C} vanish to a precision of 10^{-6} and 10^{-3}, respectively.
(2) Definition of the noninteracting lattice models

- Band flattening
(4) Definition of the interacting lattice model
- Fractional quantum Hall ground state

6 Numerical evidence thereof
(7) Fractional quantum spin Hall ground state
(8) Numerical evidence thereof

Definition of the lattice model supporting the FQSHE

Bernevig and Zhang 2006

This kinetic energy supports the integer QSH quantization $\sigma_{x y}^{\text {spin }}= \pm 2 \times \frac{e}{4 \pi}$.
We then choose the interaction

Definition of the lattice model supporting the FQSHE

Bernevig and Zhang 2006

Let

$$
H_{0}:=\sum_{\boldsymbol{k} \in \mathrm{BZ}}\left(\psi_{\boldsymbol{k}, \uparrow}^{\dagger} \frac{\boldsymbol{B}_{\boldsymbol{k}} \cdot \boldsymbol{\tau}}{\left|\boldsymbol{B}_{\boldsymbol{k}}\right|} \psi_{\boldsymbol{k}, \uparrow}+\psi_{\boldsymbol{k}, \downarrow}^{\dagger} \frac{\boldsymbol{B}_{-\boldsymbol{k}} \cdot \boldsymbol{\tau}^{\dagger}}{\left|\boldsymbol{B}_{-\boldsymbol{k}}\right|} \psi_{\boldsymbol{k}, \downarrow}\right) .
$$

This kinetic energy supports the integer QSH quantization $\sigma_{x y}^{\text {spin }}= \pm 2 \times \frac{e}{4 \pi}$.
We then choose the interaction

Definition of the lattice model supporting the FQSHE

Bernevig and Zhang 2006

Let

$$
H_{0}:=\sum_{\boldsymbol{k} \in \mathrm{BZ}}\left(\psi_{\boldsymbol{k}, \uparrow}^{\dagger} \frac{\boldsymbol{B}_{\boldsymbol{k}} \cdot \boldsymbol{\tau}}{\left|\boldsymbol{B}_{\boldsymbol{k}}\right|} \psi_{\boldsymbol{k}, \uparrow}+\psi_{\boldsymbol{k}, \downarrow}^{\dagger} \frac{\boldsymbol{B}_{-\boldsymbol{k}} \cdot \boldsymbol{\tau}^{\dagger}}{\left|\boldsymbol{B}_{-\boldsymbol{k}}\right|} \psi_{\boldsymbol{k}, \downarrow}\right) .
$$

This kinetic energy supports the integer QSH quantization $\sigma_{x y}^{\text {spin }}= \pm 2 \times \frac{e}{4 \pi}$.
We then choose the interaction

Definition of the lattice model supporting the FQSHE

Bernevig and Zhang 2006

Let

$$
H_{0}:=\sum_{\boldsymbol{k} \in \mathrm{BZ}}\left(\psi_{\boldsymbol{k}, \uparrow}^{\dagger} \frac{\boldsymbol{B}_{\boldsymbol{k}} \cdot \boldsymbol{\tau}}{\left|\boldsymbol{B}_{\boldsymbol{k}}\right|} \psi_{\boldsymbol{k}, \uparrow}+\psi_{\boldsymbol{k}, \downarrow}^{\dagger} \frac{\boldsymbol{B}_{-\boldsymbol{k}} \cdot \boldsymbol{\tau}^{\downarrow}}{\left|\boldsymbol{B}_{-\boldsymbol{k}}\right|} \psi_{\boldsymbol{k}, \downarrow}\right) .
$$

This kinetic energy supports the integer QSH quantization $\sigma_{x y}^{\text {spin }}= \pm 2 \times \frac{e}{4 \pi}$.
We then choose the interaction

$$
H_{\mathrm{int}}:=U \sum_{i \in \Lambda} \rho_{i, \uparrow} \rho_{i, \downarrow}+V \sum_{\langle i j\rangle \in \Lambda}\left(\rho_{i, \uparrow} \rho_{j, \uparrow}+\rho_{i, \downarrow} \rho_{j, \downarrow}+2 \lambda \rho_{i, \uparrow} \rho_{j, \downarrow}\right),
$$

$U, V \geq 0$.

2 Definition of the noninteracting lattice models

- Band flatiening

4. Definition of the interacting lattice model

- Fractional quantum Hall ground state

6 Numerical evidence thereof
(7) Fractional quantum spin Hall ground state
(8) Numerical evidence thereof
(9) Summary

Numerical diagonalization
 a)

c) $U / V=0, \lambda=1$
d) $U / V=3, \lambda=1$

Case $\lambda=U / V=0$: decoupled FQH states

The model decouples into two FQH-like states at $2 / 3$ filling, one for each spin orientation.

The low-energy effective theory for this state could be compatible with the choice

for the K matrix and the charge vector Q in that it has degeneracy $|\operatorname{det} K|=3^{2}=9$ as confirmed by the numerical results.

This phase is destabilized by introducing a sufficiently strong coupling between the two FQH states via λ and U.

Case $\lambda=U / V=0$: decoupled FQH states

The model decouples into two FQH-like states at $2 / 3$ filling, one for each spin orientation.

The low-energy effective theory for this state could be compatible with the choice

$$
K=\left(\begin{array}{cccc}
+1 & +1 & 0 & 0 \\
+1 & -2 & 0 & 0 \\
0 & 0 & -1 & -1 \\
0 & 0 & -1 & +2
\end{array}\right), \quad Q=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)
$$

for the K matrix and the charge vector Q in that it has degeneracy $|\operatorname{det} K|=3^{2}=9$ as confirmed by the numerical results.

This phase is destabilized by introducing a sufficiently strong coupling between the two FQH states via λ and U.

Case $\lambda=U / V=0$: decoupled FQH states

The model decouples into two FQH-like states at $2 / 3$ filling, one for each spin orientation.

The low-energy effective theory for this state could be compatible with the choice

$$
K=\left(\begin{array}{cccc}
+1 & +1 & 0 & 0 \\
+1 & -2 & 0 & 0 \\
0 & 0 & -1 & -1 \\
0 & 0 & -1 & +2
\end{array}\right), \quad Q=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)
$$

for the K matrix and the charge vector Q in that it has degeneracy $|\operatorname{det} K|=3^{2}=9$ as confirmed by the numerical results.

This phase is destabilized by introducing a sufficiently strong coupling between the two FQH states via λ and U.

Case $\lambda=1, U / V>2$: Spontaneous symmetry breaking
We observe that the ground state has the maximal spin-polarization that is allowed by the Pauli principle (Stoner instability).
To interpret this numerical result, first recall that, after projection onto the lowest bands, at most $L_{x} \times L_{y}$ electrons may have the same spin, i.e., 12 for the case at hand. Now, the filling fraction is $2 / 3$, i.e., there are $4 / 3 \times L_{x} \times L_{y}=16$ electrons. If 12 electrons are fully spin polarized, which is what we observe numerically, then the remaining $1 / 3 \times L_{x} \times L_{y}=4$ electrons may form a $1 / 3$ FQH-like state.
We conjecture that the low-energy effective theory for this fully spin-polarized ground state is characterized by the K matrix

with the filling fraction $Q=2 / 3$.

This K-matrix does not obey time-reversal symmetry since time-reversal symmetry is spontaneously broken. The degeneracy $|\operatorname{det} K|=3$ is confirmed by the numerical results. The state thus obtained resembles the conventional double-layer 2/3 FQH state, with the difference that the electron spins are not

$$
\text { Case } \lambda=1, U / V>2 \text { : Spontaneous symmetry breaking }
$$

We observe that the ground state has the maximal spin-polarization that is allowed by the Pauli principle (Stoner instability).
To interpret this numerical result, first recall that, after projection onto the lowest bands, at most $L_{x} \times L_{y}$ electrons may have the same spin, i.e., 12 for the case at hand. Now, the filling fraction is $2 / 3$, i.e., there are $4 / 3 \times L_{x} \times L_{y}=16$ electrons. If 12 electrons are fully spin polarized, which is what we observe numerically, then the remaining $1 / 3 \times L_{x} \times L_{y}=4$ electrons may form a $1 / 3$ FQH-like state.
ground state is characterized by the K matrix
with the filling fraction

This K-matrix does not obey time-reversal symmetry since time-reversal
symmetry is spontaneously broken. The degeneracy $|\operatorname{det} K|=3$ is confirmed
by the numerical results. The state thus obtained resembles the conventional double-layer 2/3 FQH state, with the difference that the electron spins are not

Case $\lambda=1, U / V>2$: Spontaneous symmetry breaking
We observe that the ground state has the maximal spin-polarization that is allowed by the Pauli principle (Stoner instability).
To interpret this numerical result, first recall that, after projection onto the lowest bands, at most $L_{x} \times L_{y}$ electrons may have the same spin, i.e., 12 for the case at hand. Now, the filling fraction is $2 / 3$, i.e., there are $4 / 3 \times L_{x} \times L_{y}=16$ electrons. If 12 electrons are fully spin polarized, which is what we observe numerically, then the remaining $1 / 3 \times L_{x} \times L_{y}=4$ electrons may form a $1 / 3$ FQH-like state.
We conjecture that the low-energy effective theory for this fully spin-polarized ground state is characterized by the K matrix

$$
K=\left(\begin{array}{cc}
+1 & 0 \\
0 & -3
\end{array}\right), \quad Q=\binom{1}{1}
$$

with the filling fraction

$$
\nu=Q^{\top} K^{-1} Q=2 / 3
$$

This K-matrix does not obey time-reversal symmetry since time-reversal
symmetry is spontaneously broken. The degeneracy $|\operatorname{det} K|=3$ is confirmed by the numerical results. The state thus obtained resembles the conventional double-layer 2/3 FQH state, with the difference that the electron spins are not

Case $\lambda=1, U / V>2$: Spontaneous symmetry breaking
We observe that the ground state has the maximal spin-polarization that is allowed by the Pauli principle (Stoner instability).
To interpret this numerical result, first recall that, after projection onto the lowest bands, at most $L_{x} \times L_{y}$ electrons may have the same spin, i.e., 12 for the case at hand. Now, the filling fraction is $2 / 3$, i.e., there are $4 / 3 \times L_{x} \times L_{y}=16$ electrons. If 12 electrons are fully spin polarized, which is what we observe numerically, then the remaining $1 / 3 \times L_{x} \times L_{y}=4$ electrons may form a $1 / 3$ FQH-like state.
We conjecture that the low-energy effective theory for this fully spin-polarized ground state is characterized by the K matrix

$$
K=\left(\begin{array}{cc}
+1 & 0 \\
0 & -3
\end{array}\right), \quad Q=\binom{1}{1}
$$

with the filling fraction

$$
\nu=Q^{\top} K^{-1} Q=2 / 3
$$

This K-matrix does not obey time-reversal symmetry since time-reversal symmetry is spontaneously broken. The degeneracy $|\operatorname{det} K|=3$ is confirmed by the numerical results. The state thus obtained resembles the conventional double-layer 2/3 FQH state, with the difference that the electron spins are not fully polarized.

Case $\lambda=1, U / V=0$: Possible paired state

A time-reversal symmetric state with a spectral gap and a 3-fold ground state degeneracy is obtained for small U / V.

> This state cannot be captured by the time-reversal symmetric Abelian Chern-Simons theory since its degeneracy is not the square of an integer, despite the time-reversal symmetry.

One may speculate that this state realizes some real-space pairing of spin-up with spin-down electrons, since for small U / V it costs little energy to have two electrons of opposite spin at the same lattice site.

Case $\lambda=1, U / V=0$: Possible paired state

A time-reversal symmetric state with a spectral gap and a 3-fold ground state degeneracy is obtained for small U / V.

This state cannot be captured by the time-reversal symmetric Abelian Chern-Simons theory since its degeneracy is not the square of an integer, despite the time-reversal symmetry.

One may speculate that this state realizes some real-space pairing of spin-up with spin-down electrons, since for small U / V it costs little energy to have two electrons of opposite spin at the same lattice site.

Case $\lambda=1, U / V=0$: Possible paired state

A time-reversal symmetric state with a spectral gap and a 3-fold ground state degeneracy is obtained for small U / V.

This state cannot be captured by the time-reversal symmetric Abelian Chern-Simons theory since its degeneracy is not the square of an integer, despite the time-reversal symmetry.

One may speculate that this state realizes some real-space pairing of spin-up with spin-down electrons, since for small U / V it costs little energy to have two electrons of opposite spin at the same lattice site.
(1) Introduction
(3) Deilinition of the noninteracting lattice models
(3) Band flattening

Definition of the interacting lattice model
(5) Fractional quantum Hall ground state

- Numerical evidence thereof
(7) Fractional quantum spin Hall ground state
- Numerical evidence thereof
(9) Summary
C. Mudry (PSI)

Fractional topological insulators

Summary

- We have proposed a simple recipe to deform any non-interacting lattice model so as to obtain flat bands, while preserving locality.
- We flattened the bands of the chiral π-flux phase and then lifted the resulting macroscopic ground state degeneracy with repulsive interactions.
- Via exact diagonalization, we have found signatures for a FQH-like topological ground state at $1 / 3$ filling.
- We took the same approach to construct a FQSH-state and found microscopic signatures for it.
- This opens the door for the possibility of realizing dissipativeless charge transport (quantum computing?) at room temperature.

Summary

- We have proposed a simple recipe to deform any non-interacting lattice model so as to obtain flat bands, while preserving locality.
- We flattened the bands of the chiral π-flux phase and then lifted the resulting macroscopic ground state degeneracy with repulsive interactions.
- Via exact diagonalization, we have found signatures for a FQH-like topological ground state at $1 / 3$ filling.
- We took the same approach to construct a FQSH-state and found microscopic signatures for it.

Summary

- We have proposed a simple recipe to deform any non-interacting lattice model so as to obtain flat bands, while preserving locality.
- We flattened the bands of the chiral π-flux phase and then lifted the resulting macroscopic ground state degeneracy with repulsive interactions.
- Via exact diagonalization, we have found signatures for a FQH-like topological ground state at $1 / 3$ filling.
- We took the same approach to construct a FQSH-state and found microscopic signatures for it.

Summary

- We have proposed a simple recipe to deform any non-interacting lattice model so as to obtain flat bands, while preserving locality.
- We flattened the bands of the chiral π-flux phase and then lifted the resulting macroscopic ground state degeneracy with repulsive interactions.
- Via exact diagonalization, we have found signatures for a FQH-like topological ground state at $1 / 3$ filling.
- We took the same approach to construct a FQSH-state and found microscopic signatures for it.

Summary

- We have proposed a simple recipe to deform any non-interacting lattice model so as to obtain flat bands, while preserving locality.
- We flattened the bands of the chiral π-flux phase and then lifted the resulting macroscopic ground state degeneracy with repulsive interactions.
- Via exact diagonalization, we have found signatures for a FQH-like topological ground state at $1 / 3$ filling.
- We took the same approach to construct a FQSH-state and found microscopic signatures for it.

Summary

- We have proposed a simple recipe to deform any non-interacting lattice model so as to obtain flat bands, while preserving locality.
- We flattened the bands of the chiral π-flux phase and then lifted the resulting macroscopic ground state degeneracy with repulsive interactions.
- Via exact diagonalization, we have found signatures for a FQH-like topological ground state at $1 / 3$ filling.
- We took the same approach to construct a FQSH-state and found microscopic signatures for it.
- This opens the door for the possibility of realizing dissipativeless charge transport (quantum computing?) at room temperature.

Bulk time-reversal symmetric effective theory (Abelian)

 Define $S:=S_{0}+S_{e}+S_{s}$ with$$
\begin{aligned}
& S_{0}:=-\int \mathrm{d} t \mathrm{~d}^{2} \boldsymbol{x} \epsilon^{\mu \nu \rho} \frac{1}{4 \pi} K_{i j} a_{\mu}^{i} \partial_{\nu} a_{\rho}^{j}, \\
& S_{e}:=+\int \mathrm{d} t \mathrm{~d}^{2} \boldsymbol{x} \epsilon^{\mu \nu \rho} \frac{e}{2 \pi} Q_{i} A_{\mu} \partial_{\nu} a_{\rho}^{i}, \\
& S_{s}:=+\int \mathrm{d} t \mathrm{~d}^{2} \boldsymbol{x} \epsilon^{\mu \nu \rho} \frac{s}{2 \pi} S_{i} B_{\mu} \partial_{\nu} a_{\rho}^{i},
\end{aligned}
$$

and

$$
\begin{array}{lll}
K=\left(\begin{array}{cc}
\kappa & \Delta \\
\Delta^{\top} & -\kappa
\end{array}\right), & \kappa^{\top}=\kappa \in \operatorname{GL}(N, \mathbb{Z}), \quad \Delta^{\top}=-\Delta \in \operatorname{GL}(N, \mathbb{Z}), \\
Q=\binom{\varrho}{\varrho} \in \mathbb{Z}^{2 N}, & S=\binom{\varrho}{-\varrho} \in \mathbb{Z}^{2 N}, & (-)^{Q_{i}}=(-)^{K_{i i}} .
\end{array}
$$

Then

$$
\nu_{e}:=Q^{\top} K^{-1} Q=0, \quad \nu_{s}:=\frac{1}{2} Q^{\top} K^{-1} S \neq 0, \quad \sigma_{\mathrm{sH}}:=\frac{e}{2 \pi} \times \nu_{s} .
$$

Wave function for $N=1$

If

$$
K=\left(\begin{array}{cc}
+m & 0 \\
0 & -m
\end{array}\right) \in \operatorname{GL}(2, \mathbb{Z}), \quad Q=\binom{1}{1} \in \mathbb{Z}^{2}
$$

for some given positive odd integer m, then

$$
\nu_{\mathrm{s}}=\frac{1}{m}
$$

and

$$
\begin{aligned}
& \Psi_{1 / m}\left(\{z, \bar{z}\}_{n} \mid\{w, \bar{w}\}_{n}\right)= \\
& {\left[\prod_{i=1}^{n} \prod_{j=i+1}^{n}\left(z_{i}-z_{j}\right)^{m}\left(\bar{w}_{i}-\bar{w}_{j}\right)^{m}\right] \prod_{i=1}^{n} \exp \left(-\frac{\left|z_{i}\right|^{2}+\left|\bar{w}_{i}\right|^{2}}{4 \ell^{2}}\right) .}
\end{aligned}
$$

Wave function in the symmetric representation for $N=2$
If

$$
K=\left(\begin{array}{cc}
+\left(\begin{array}{cc}
m_{1} & n \\
n & m_{2}
\end{array}\right) & +\left(\begin{array}{cc}
0 & +d \\
-d & 0
\end{array}\right) \\
-\left(\begin{array}{cc}
0 & +d \\
-d & 0
\end{array}\right) & -\left(\begin{array}{cc}
m_{1} & n \\
n & m_{2}
\end{array}\right)
\end{array}\right) \in \mathrm{GL}(4, \mathbb{Z}), \quad Q=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \in \mathbb{Z}^{4}
$$

with $m_{1} m_{2}-n^{2}>0$, then

$$
\nu_{\mathrm{s}}=\frac{m_{1}+m_{2}-2 n}{m_{1} m_{2}-n^{2}+d^{2}}
$$

and [generalization of Halperin's $\left(m_{1}, m_{2}, n\right)$ bilayer function]

$$
\begin{aligned}
& \Psi_{m_{1}, m_{2}, n, d}^{\text {symm }}\left(\left\{z_{1}, \bar{z}_{1}\right\}_{n_{1}} ;\left\{z_{2}, \bar{z}_{2}\right\}_{n_{2}} \mid\left\{w_{1}, \bar{w}_{1}\right\}_{n_{1}} ;\left\{w_{2}, \bar{w}_{2}\right\}_{n_{2}}\right)= \\
& \quad \Psi_{1 / m_{1}}\left(\left\{z_{1}, \bar{z}_{1}\right\}_{n_{1}} \mid\left\{w_{1}, \bar{w}_{1}\right\}_{n_{1}}\right) \times \Psi_{1 / m_{2}}\left(\left\{z_{2}, \bar{z}_{2}\right\}_{n_{2}} \mid\left\{w_{2}, \bar{w}_{2}\right\}_{n_{2}}\right) \\
& \quad \times \prod_{i=1}^{n_{1}} \prod_{j=1}^{n_{2}}\left(z_{1, i}-z_{2, j}\right)^{n}\left(\bar{w}_{1, i}-\bar{w}_{2, j}\right)^{n}\left(z_{1, i}-w_{2, j}\right)^{d}\left(\bar{w}_{1, i}-\bar{z}_{2, j}\right)^{d} .
\end{aligned}
$$

Wave function in the hierarchical representation for $N=2$
If
with m a positive odd integer and p an even integer then

$$
\nu_{\mathrm{s}}=\frac{p}{m p+1-d^{2}}
$$

and [generalization of Halperin's $\nu=p /(m p+1)$ bilayer function]
$\Psi_{m,-p, 1, d}^{\text {hier }}\left(\{z, \bar{z}\}_{p n} \mid\{w, \bar{w}\}_{p n}\right)=$

$$
\begin{aligned}
& {\left[\prod_{i=1}^{n} \int_{\Omega} \mathrm{d}^{2} \eta_{i} \int_{\Omega} \mathrm{d}^{2} \xi_{i}\right] \times \psi_{1 / m}\left(\{z, \bar{z}\}_{p n} \mid\{w, \bar{w}\}_{p n}\right) \times \Psi_{1 / p}\left(\{\xi, \bar{\xi}\}_{n} \mid\{\eta, \bar{\eta}\}_{n}\right) } \\
\times & \prod_{i=1}^{p n} \prod_{j=1}^{n}\left(z_{i}-\eta_{j}\right)\left(\bar{w}_{i}-\bar{\xi}_{j}\right)\left(z_{i}-\xi_{j}\right)^{d}\left(\bar{w}_{i}-\bar{\eta}_{j}\right)^{d} .
\end{aligned}
$$

Edge theory with time-reversal symmetry

The bulk action with a two-body and translation-invariant interaction is equivalent to

$$
\hat{H}_{0}:=\int_{0}^{L} \mathrm{~d} x \frac{1}{4 \pi} \partial_{x} \hat{\Phi}^{\top} V \partial_{x} \hat{\Phi}
$$

where V is a $2 N \times 2 N$ symmetric and positive definite matrix and

$\left[\hat{\Phi}_{i}(t, x), \hat{\Phi}_{j}\left(t, x^{\prime}\right)\right]=-\mathrm{i} \pi\left(K_{i j}^{-1} \operatorname{sgn}\left(x-x^{\prime}\right)+\Theta_{i j}\right)$.

Here,

$$
\Theta_{i j}:=K_{i k}^{-1} L_{k l} K_{l j}^{-1}
$$

and the antisymmetric $2 N \times 2 N$ matrix L is defined by (Haldane 1995)

$$
L_{i j}=\operatorname{sgn}(i-j)\left(K_{i j}+Q_{i} Q_{j}\right),
$$

where $\operatorname{sgn}(0)=0$ is understood.

Tunneling of electronic charge among the different edge branches is

$$
\hat{H}_{\mathrm{int}}:=-\int_{0}^{L} \mathrm{~d} x \sum_{T \in \mathbb{L}} h_{T}(x): \cos \left(T^{\top} K \hat{\Phi}(x)+\alpha_{T}(x)\right): .
$$

The real functions $h_{T}(x) \geq 0$ and $0 \leq \alpha_{T}(x) \leq 2 \pi$ encode information about the disorder along the edge when position dependent. The set

$$
\mathbb{L}:=\left\{T \in \mathbb{Z}^{2 N} \mid T^{\top} Q=0\right\}
$$

encodes all the possible charge neutral tunneling processes, i.e., those that just rearrange charge among the branches.
At least one pair of Kramers degenerate edge state remains delocalized along the edge described by $\hat{H}:=\hat{H}_{0}+\hat{H}_{\text {int }}$ if the integer

$$
R:=r \varrho^{\top}(\kappa-\Delta)^{-1} \varrho
$$

is odd. Here, the integer r is the smallest integer such that all the N components of the vector $r(\kappa-\Delta)^{-1} \varrho$ are integers.

