# Thermodynamic Study For Conformal Phase in Large $N_f$ QCD

### Kohtaroh Miura<sup>A</sup>, M. Lombardo<sup>A</sup>, E. Pallante<sup>B</sup> A. Deuzeman<sup>C</sup>, and T. Silva<sup>B</sup>

Laboratori Nazionali di Frascati - INFN<sup>A</sup> Rijksuniversiteit Groningen<sup>B</sup> University of Bern<sup>C</sup>

Talk in QFT and Condensed Matter at LNF-INFN, September 9

### **QCD** Phase Diagram VS Graphene Phase Diagram



Figure: Left: QCD Phase Diagram. Right: Durt('09), Graphene Phase Diagram

### Graphene Phase Diagram in $N_f - \beta$ Plane, $\beta = \epsilon_0 v_{\rm F}/e^2$



Figure: Right: Durt('09), Graphene Phase Diagram II

### Miransky-Yamawaki Phase Diagram: Naive Speculation



### **Beyond Miransky Scaling**



医下颌 医下颌

-

### **Beyond Miransky Scaling**



ヨト イヨト ニヨ

### $T - N_f$ Phase Diagram: Functional Renormalization Group



#### **Critical Exponent**

- Beyond Miransky Scaling??
- Indicated in Large N<sub>F</sub> QCD (FRG, Braun-Gies ('06)) and Graphene (Lattice, Durt-Lahde ('09))!!

### $T - N_f$ Phase Diagram: Functional Renormalization Group



#### ∃Critical Exponent

- Beyond Miransky Scaling??
- Indicated in Large N<sub>f</sub> QCD (FRG, Braun-Gies ('06)) and Graphene (Lattice, Durt-Lahde ('09))!!

### Large $N_f$ Gauge Theory at Finite T

#### Status

• Conformality: Interesting Phase in Strongly Interacting Gauge Theory.

- Beyond Standard Model: AdS/CFT, Electroweak Symmetry Breaking, Walking Technicolor.
- Critical Phenomena: Quantum PT and Beyond Miransky Scaling, From QGP To Conformal Window.
- Good Conversations: Lattice, FRG, and Graphene!!

$$\frac{\langle \bar{\Psi}\Psi \rangle|_{\rm ETC}}{\langle \bar{\Psi}\Psi \rangle|_{\rm TC}} = \exp\left[\int_{\Lambda_{\rm TC}}^{\Lambda_{\rm ETC}} d(\log\mu) \ \gamma[g^2(\mu)]\right] \xrightarrow{Conformal} \left(\frac{\Lambda_{\rm ETC}}{\Lambda_{\rm TC}}\right)^{\gamma[g_{\bullet}^2]}.$$
 (4)

3

### Large $N_f$ Gauge Theory at Finite T

#### Status

• Conformality: Interesting Phase in Strongly Interacting Gauge Theory.

- Beyond Standard Model: AdS/CFT, Electroweak Symmetry Breaking, Walking Technicolor.
- Critical Phenomena: Quantum PT and Beyond Miransky Scaling, From QGP To Conformal Window.

Good Conversations: Lattice, FRG, and Graphene!!

$$\frac{\langle \bar{\Psi}\Psi \rangle|_{\rm ETC}}{\langle \bar{\Psi}\Psi \rangle|_{\rm TC}} = \exp\left[\int_{\Lambda_{\rm TC}}^{\Lambda_{\rm ETC}} d(\log\mu) \ \gamma \left[g^2(\mu)\right]\right] \xrightarrow{Conformal} \left(\frac{\Lambda_{\rm ETC}}{\Lambda_{\rm TC}}\right)^{\gamma \left[g_*^2\right]} . \tag{4}$$

### Large $N_f$ Gauge Theory at Finite T

#### Status

- Conformality: Interesting Phase in Strongly Interacting Gauge Theory.
- Beyond Standard Model: AdS/CFT, Electroweak Symmetry Breaking, Walking Technicolor.
- Critical Phenomena: Quantum PT and Beyond Miransky Scaling, From QGP To Conformal Window.
- Good Conversations: Lattice, FRG, and Graphene!!

$$\frac{\langle \bar{\Psi}\Psi \rangle|_{\rm ETC}}{\langle \bar{\Psi}\Psi \rangle|_{\rm TC}} = \exp\left[\int_{\Lambda_{\rm TC}}^{\Lambda_{\rm ETC}} d(\log\mu) \ \gamma[g^2(\mu)]\right] \xrightarrow{Conformal} \left(\frac{\Lambda_{\rm ETC}}{\Lambda_{\rm TC}}\right)^{\gamma[g_*^2]}.$$
 (4)

### Large $N_f$ Gauge Theory at Finite T

#### Status

- Conformality: Interesting Phase in Strongly Interacting Gauge Theory.
- Beyond Standard Model: AdS/CFT, Electroweak Symmetry Breaking, Walking Technicolor.
- Critical Phenomena: Quantum PT and Beyond Miransky Scaling, From QGP To Conformal Window.
- Good Conversations: Lattice, FRG, and Graphene!!

$$\frac{\langle \bar{\Psi}\Psi \rangle|_{\rm ETC}}{\langle \bar{\Psi}\Psi \rangle|_{\rm TC}} = \exp\left[\int_{\Lambda_{\rm TC}}^{\Lambda_{\rm ETC}} d(\log\mu) \ \gamma \left[g^2(\mu)\right]\right] \xrightarrow{Conformal} \left(\frac{\Lambda_{\rm ETC}}{\Lambda_{\rm TC}}\right)^{\gamma \left[g_{\star}^2\right]} . \tag{4}$$

### Large $N_f$ Gauge Theory at Finite T

#### Status

- Conformality: Interesting Phase in Strongly Interacting Gauge Theory.
- Beyond Standard Model: AdS/CFT, Electroweak Symmetry Breaking, Walking Technicolor.
- Critical Phenomena: Quantum PT and Beyond Miransky Scaling, From QGP To Conformal Window.
- Good Conversations: Lattice, FRG, and Graphene!!

$$\frac{\langle \bar{\Psi}\Psi \rangle|_{\rm ETC}}{\langle \bar{\Psi}\Psi \rangle|_{\rm TC}} = \exp\left[\int_{\Lambda_{\rm TC}}^{\Lambda_{\rm ETC}} d(\log\mu) \ \gamma[g^2(\mu)]\right] \xrightarrow{Conformal} \left(\frac{\Lambda_{\rm ETC}}{\Lambda_{\rm TC}}\right)^{\gamma[g^2_*]}.$$
 (4)

### **Table of Contents**



#### 2 Results

- Setups
- Chiral Phase Transition at  $N_f = 6$
- Miransky-Yamawaki Diagram and Waling Signature
- Decreasing Nature of T<sub>c</sub>(N<sub>f</sub>)??

### **3** Summary and Future Works

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ??

### **Table of Contents**



### 2 Results

- Setups
- Chiral Phase Transition at  $N_f = 6$
- Miransky-Yamawaki Diagram and Waling Signature
- Decreasing Nature of T<sub>c</sub>(N<sub>f</sub>)??

### 3 Summary and Future Works

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signatu Decreasing Nature of  $T_C(N_f)$ ??

(日) (同) (三) (三)

### Setups

#### Observations

- Use Staggered Fermions with 0, 4, 6, 8, and 12 Flavors in Fundamental Representation.
- Measure Chiral condensates (PBP) and Polyakov loop (PLOOP).
- Observe Chiral and/or Deconfinement Trans. at Finite T ( $N_s \gg N_t$ ).
- Obtain  $\beta_c(N_t, N_f) \rightarrow Miransky-Yamawaki Diagram.$
- Investigate  $T_c/\Lambda_{
  m L}(N_f)$  etc.
- Determine  $a(\beta_c(N_f), N_f)$  and  $T_c(N_f)$  by using a common UV scale as ruler.  $\rightarrow$  Beyond Miransky Scaling??

- MILC-Code: http://www.physics.utah.edu/~detar/milc\_milc\_qcd.html
- Rational Hybrid Molecular-Dynamics with Omelyan-Integrator
- IBM-sp6 in CINECA, SP16000 in YITP, and Italian-Grid-Infrastructures

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signatur Decreasing Nature of  $T_c(N_f)$ ??

(日) (同) (三) (三)

### Setups

#### Observations

- Use Staggered Fermions with 0, 4, 6, 8, and 12 Flavors in Fundamental Representation.
- Measure Chiral condensates (PBP) and Polyakov loop (PLOOP).
- Observe Chiral and/or Deconfinement Trans. at Finite T ( $N_s \gg N_t$ ).
- Obtain  $\beta_c(N_t, N_f) \rightarrow Miransky-Yamawaki Diagram.$
- Investigate  $T_c/\Lambda_{
  m L}(N_f)$  etc.
- Determine  $a(\beta_c(N_f), N_f)$  and  $T_c(N_f)$  by using a common UV scale as ruler.  $\rightarrow$  Beyond Miransky Scaling??

- MILC-Code: http://www.physics.utah.edu/~detar/milc/milc\_qcd.html
- Rational Hybrid Molecular-Dynamics with Omelyan-Integrator
- IBM-sp6 in CINECA, SP16000 in YITP, and Italian-Grid-Infrastructures

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_c(N_f)$ ??

(日) (同) (三) (三)

### Setups

#### Observations

- Use Staggered Fermions with 0, 4, 6, 8, and 12 Flavors in Fundamental Representation.
- Measure Chiral condensates (PBP) and Polyakov loop (PLOOP).
- Observe Chiral and/or Deconfinement Trans. at Finite T ( $N_s \gg N_t$ ).
- Obtain  $\beta_c(N_t, N_f) \rightarrow M$ iransky-Yamawaki Diagram.
- Investigate  $T_c/\Lambda_{
  m L}(N_f)$  etc.
- Determine  $a(\beta_c(N_f), N_f)$  and  $T_c(N_f)$  by using a common UV scale as ruler.  $\rightarrow$  Beyond Miransky Scaling??

- MILC-Code: http://www.physics.utah.edu/~detar/milc/milc\_qcd.html
- Rational Hybrid Molecular-Dynamics with Omelyan-Integrator
- IBM-sp6 in CINECA, SP16000 in YITP, and Italian-Grid-Infrastructures

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_c(N_f)$ ??

(日) (同) (三) (三)

### Setups

#### Observations

- Use Staggered Fermions with 0, 4, 6, 8, and 12 Flavors in Fundamental Representation.
- Measure Chiral condensates (PBP) and Polyakov loop (PLOOP).
- Observe Chiral and/or Deconfinement Trans. at Finite T ( $N_s \gg N_t$ ).
- Obtain  $\beta_c(N_t, N_f) \rightarrow Miransky-Yamawaki Diagram.$
- Investigate  $T_c/\Lambda_{
  m L}(N_f)$  etc.
- Determine  $a(\beta_c(N_f), N_f)$  and  $T_c(N_f)$  by using a common UV scale as ruler.  $\rightarrow$  Beyond Miransky Scaling??

- MILC-Code: http://www.physics.utah.edu/~detar/milc/milc\_qcd.html
- Rational Hybrid Molecular-Dynamics with Omelyan-Integrator
- IBM-sp6 in CINECA, SP16000 in YITP, and Italian-Grid-Infrastructures

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_c(N_f)$ ??

(日) (同) (三) (三)

### Setups

#### Observations

- Use Staggered Fermions with 0, 4, 6, 8, and 12 Flavors in Fundamental Representation.
- Measure Chiral condensates (PBP) and Polyakov loop (PLOOP).
- Observe Chiral and/or Deconfinement Trans. at Finite T ( $N_s \gg N_t$ ).
- Obtain  $\beta_c(N_t, N_f) \rightarrow \text{Miransky-Yamawaki Diagram}$ .
- Investigate  $T_c/\Lambda_L(N_f)$  etc.
- Determine  $a(\beta_c(N_f), N_f)$  and  $T_c(N_f)$  by using a common UV scale as ruler.  $\rightarrow$  Beyond Miransky Scaling??

- MILC-Code: http://www.physics.utah.edu/~detar/milc\_milc\_qcd.html
- Rational Hybrid Molecular-Dynamics with Omelyan-Integrator
- IBM-sp6 in CINECA, SP16000 in YITP, and Italian-Grid-Infrastructures

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_c(N_f)$ ??

(日) (同) (三) (三)

### Setups

#### Observations

- Use Staggered Fermions with 0, 4, 6, 8, and 12 Flavors in Fundamental Representation.
- Measure Chiral condensates (PBP) and Polyakov loop (PLOOP).
- Observe Chiral and/or Deconfinement Trans. at Finite T ( $N_s \gg N_t$ ).
- Obtain  $\beta_c(N_t, N_f) \rightarrow \text{Miransky-Yamawaki Diagram}$ .
- Investigate  $T_c/\Lambda_L(N_f)$  etc.
- Determine  $a(\beta_c(N_f), N_f)$  and  $T_c(N_f)$  by using a common UV scale as ruler.  $\rightarrow$  Beyond Miransky Scaling??

- MILC-Code: http://www.physics.utah.edu/~detar/milc\_milc\_qcd.html
- Rational Hybrid Molecular-Dynamics with Omelyan-Integrator
- IBM-sp6 in CINECA, SP16000 in YITP, and Italian-Grid-Infrastructures

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_c(N_f)$ ??

### Setups

#### Observations

- Use Staggered Fermions with 0, 4, 6, 8, and 12 Flavors in Fundamental Representation.
- Measure Chiral condensates (PBP) and Polyakov loop (PLOOP).
- Observe Chiral and/or Deconfinement Trans. at Finite T ( $N_s \gg N_t$ ).
- Obtain  $\beta_c(N_t, N_f) \rightarrow \text{Miransky-Yamawaki Diagram}$ .
- Investigate  $T_c/\Lambda_L(N_f)$  etc.
- Determine  $a(\beta_c(N_f), N_f)$  and  $T_c(N_f)$  by using a common UV scale as ruler.  $\rightarrow$  Beyond Miransky Scaling??

- MILC-Code: http://www.physics.utah.edu/~detar/milc\_milc\_qcd.html
- Rational Hybrid Molecular-Dynamics with Omelyan-Integrator
- IBM-sp6 in CINECA, SP16000 in YITP, and Italian-Grid-Infrastructures

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_c(N_f)$ ??

Scaling Behavior in QCD-Like (with Confinement) Theory on Lattice

$$B(g) = M \frac{dg}{dM} , \qquad \int_{g_L}^{\infty} \frac{dg}{B(g)} = \int_{1/a}^{\Lambda_L} \frac{dM}{M} , \qquad (5)$$
$$\Lambda_L a(\beta) = \left(\frac{\beta}{2N_c b_0}\right)^{(b1/(2b_0^2))} \exp\left[-\frac{\beta}{4N_c b_0}\right] , \quad (2\text{-Loop}) \qquad (6)$$
$$T \equiv \frac{1}{a(\beta) \cdot N_\tau} . \qquad (7)$$

#### **LARGER** $\beta \equiv 2N_c/g_L^2$

Close to Continuum

Setups **Chiral Phase Transition at**  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ??

Scaling Behavior in QCD-Like (with Confinement) Theory on Lattice

$$B(g) = M \frac{dg}{dM} , \qquad \int_{g_L}^{\infty} \frac{dg}{B(g)} = \int_{1/a}^{\Lambda_L} \frac{dM}{M} , \qquad (5)$$
$$\Lambda_L a(\beta) = \left(\frac{\beta}{2N_c b_0}\right)^{(b1/(2b_0^2))} \exp\left[-\frac{\beta}{4N_c b_0}\right] , \quad (2\text{-Loop}) \qquad (6)$$
$$T \equiv \frac{1}{a(\beta) \cdot N_\tau} . \qquad (7)$$

#### **LARGER** $\beta \equiv 2N_c/g_L^2$

Close to Continuum

Setups **Chiral Phase Transition at**  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ??

Scaling Behavior in QCD-Like (with Confinement) Theory on Lattice

$$B(g) = M \frac{dg}{dM} , \qquad \int_{g_L}^{\infty} \frac{dg}{B(g)} = \int_{1/a}^{\Lambda_L} \frac{dM}{M} , \qquad (5)$$

$$\Lambda_L a(\beta) = \left(\frac{\beta}{2N_c b_0}\right)^{(b1/(2b_0^-))} \exp\left[-\frac{\beta}{4N_c b_0}\right], \quad (2\text{-Loop}) \tag{6}$$

$$T \equiv \frac{1}{a(\beta) \cdot N_{\tau}} \ . \tag{7}$$

### LARGER $\beta \equiv 2N_c/g_L^2$

Close to Continuum.

Setups **Chiral Phase Transition at**  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ??

Scaling Behavior in QCD-Like (with Confinement) Theory on Lattice

$$B(g) = M \frac{dg}{dM} , \qquad \int_{g_L}^{\infty} \frac{dg}{B(g)} = \int_{1/a}^{\Lambda_L} \frac{dM}{M} , \qquad (5)$$

$$\Lambda_L a(\beta) = \left(\frac{\beta}{2N_c b_0}\right)^{(b1/(2b_0^2))} \exp\left[-\frac{\beta}{4N_c b_0}\right], \quad (2\text{-Loop}) \tag{6}$$

$$T \equiv \frac{1}{a(\beta) \cdot N_{\tau}} \ . \tag{7}$$

### **LARGER** $\beta \equiv 2N_c/g_L^2$

Olose to Continuum.

Setups **Chiral Phase Transition at**  $N_{f} = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_{c}(N_{f})$ ?

### **Thermal Scaling of Chiral Phase Transition**



Setups **Chiral Phase Transition at**  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ??

### The Histogram of Chiral Condensate



Setups **Chiral Phase Transition at**  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ??

Collection of  $\beta_c$ ,  $N_f = 6$ 

**Table:** The summary table of  $\beta_c$  at  $N_f = 6$ .

| $N_f \setminus N_t$ | 4               | 6               | 8               | 12            |
|---------------------|-----------------|-----------------|-----------------|---------------|
| 6                   | $4.675\pm0.025$ | $5.025\pm0.025$ | $5.225\pm0.025$ | $5.45\pm0.05$ |

$$\Lambda_{La}(\beta_c) = \left(\frac{\beta}{2N_c b_0}\right)^{(b1/(2b_0^c))} \exp\left[-\frac{\beta_c}{4N_c b_0}\right], \quad (2\text{-Loop}).$$
(9)

Setups **Chiral Phase Transition at**  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ??

Collection of  $\beta_c$ ,  $N_f = 6$ 

**Table:** The summary table of  $\beta_c$  at  $N_f = 6$ .

| $N_f \setminus N_t$ | 4               | 6               | 8               | 12            |
|---------------------|-----------------|-----------------|-----------------|---------------|
| 6                   | $4.675\pm0.025$ | $5.025\pm0.025$ | $5.225\pm0.025$ | $5.45\pm0.05$ |

$$\Lambda_{La}(\beta_c) = \left(\frac{\beta}{2N_c b_0}\right)^{(b1/(2b_0^2))} \exp\left[-\frac{\beta_c}{4N_c b_0}\right], \quad (2\text{-Loop}).$$
(9)

Setups **Chiral Phase Transition at**  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ??

(10)

 $1/N_{\tau} = (T_c/\Lambda_{\rm L}) \times \Lambda_{\rm L} a(\beta_c)$ 



Kohtaroh Miura<sup>A</sup>, M. Lombardo<sup>A</sup>, E. Pallante<sup>B</sup> A. Deuzeman<sup>C</sup>, and T. S Thermodynamic Study For Conformal Phase in Large N<sub>F</sub> QCD

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ??

### Collection of $\beta_c$ , for several $N_f$

**Table:** The summary table of  $\beta_c$ . The values are obtained by using the same action except the number of flavors.

| $N_f \setminus N_t$ | 4               | 6                   | 8               | 12                                |
|---------------------|-----------------|---------------------|-----------------|-----------------------------------|
| 0                   | -               | $7.88\pm0.05$       | -               | -                                 |
| 4                   | -               | $5.89\pm0.03$       | -               |                                   |
| 6                   | $4.675\pm0.025$ | $5.025\pm0.025$     | $5.225\pm0.025$ | $5.45\pm0.05$                     |
| 8                   | -               | $4.1125 \pm 0.0125$ | -               | $\textbf{4.34} \pm \textbf{0.04}$ |

$$\frac{1}{N_{\tau}} = \frac{T_c}{\Lambda_{\rm L}} (N_f) \cdot \Lambda_{\rm L} a(\beta_c(N_f)) . \qquad (11)$$

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ?

### Miransky-Yamawaki Phase Diagram: Naive Speculation



Kohtaroh Miura<sup>A</sup>, M. Lombardo<sup>A</sup>, E. Pallante<sup>B</sup> A. Deuzeman<sup>C</sup>, and T. Si Thermodynamic Study For Conformal Phase in Large N<sub>f</sub> QCD

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ??

Thermal Transition Lines in Miransky-Yamwaki Phase Diagram



Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ??

### Comparison of Slope $T_c/\Lambda_L$



#### Enhancement of $T_c/\Lambda_L$

- Around  $N_f \simeq 6$ , the role of has started being different from that in  $N_f \le 4$ .
- Onset of Walking? c.f. S.Guputa('01) and Appelquist('10).

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ??

### Comparison of Slope $T_c/\Lambda_L$



#### Enhancement of $T_c/\Lambda_L$

- Around  $N_f \simeq 6$ , the role of has started being different from that in  $N_f \leq 4$ .
- Onset of Walking? c.f. S.Guputa('01) and Appelquist('10).

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ?

- 4 E M 4 E M

### Reference-Scale $\Lambda_{\rm ref}$

Integrating 2-loop beta function from  $\Lambda_{ref}(\beta_{ref})$  to  $a^{-1}(\beta_c)$ , We obtain

$$\Lambda_{\rm ref}(\beta_{\rm ref}) \times \boldsymbol{a}(\beta_c) = \left(\frac{b_0^2}{b_1} \frac{\beta_c + 2N_c b_1/b_0}{\beta_{\rm ref} + 2N_c b_1/b_0}\right)^{b1/(2b_0^2)} \exp\left[-\frac{\beta_c - \beta_{\rm ref}}{4N_c b_0}\right]$$

#### Scheme Settings

- $\Lambda_{\mathrm{ref}}(eta_{\mathrm{ref}}) 
  ightarrow \Lambda_{\mathrm{L}}(1+\mathcal{O}(1/eta_c)) \quad eta_{\mathrm{ref}} 
  ightarrow 0$
- Using larger  $\beta_{ref}$  gives more UV  $\Lambda_{ref}$ .

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ?

- 4 E b

### Reference-Scale $\Lambda_{\rm ref}$

Integrating 2-loop beta function from  $\Lambda_{ref}(\beta_{ref})$  to  $a^{-1}(\beta_c)$ , We obtain

$$\Lambda_{\rm ref}(\beta_{\rm ref}) \times \boldsymbol{a}(\beta_c) = \left(\frac{b_0^2}{b_1} \frac{\beta_c + 2N_c b_1/b_0}{\beta_{\rm ref} + 2N_c b_1/b_0}\right)^{b1/(2b_0^2)} \exp\left[-\frac{\beta_c - \beta_{\rm ref}}{4N_c b_0}\right]$$

#### **Scheme Settings**

- $\Lambda_{\mathrm{ref}}(\beta_{\mathrm{ref}}) \rightarrow \Lambda_{\mathrm{L}}(1 + \mathcal{O}(1/\beta_c)) \quad \beta_{\mathrm{ref}} \rightarrow 0$
- Using larger  $\beta_{ref}$  gives more UV  $\Lambda_{ref}$ .

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ?

- ( E ) - (

### Reference-Scale $\Lambda_{\rm ref}$

Integrating 2-loop beta function from  $\Lambda_{ref}(\beta_{ref})$  to  $a^{-1}(\beta_c)$ , We obtain

$$\Lambda_{\rm ref}(\beta_{\rm ref}) \times \boldsymbol{a}(\beta_c) = \left(\frac{b_0^2}{b_1} \frac{\beta_c + 2N_c b_1/b_0}{\beta_{\rm ref} + 2N_c b_1/b_0}\right)^{b1/(2b_0^2)} \exp\left[-\frac{\beta_c - \beta_{\rm ref}}{4N_c b_0}\right]$$

#### **Scheme Settings**

- $\Lambda_{\mathrm{ref}}(\beta_{\mathrm{ref}}) \rightarrow \Lambda_{\mathrm{L}}(1 + \mathcal{O}(1/\beta_c)) \quad \beta_{\mathrm{ref}} \rightarrow 0$
- Using larger  $\beta_{\rm ref}$  gives more UV  $\Lambda_{\rm ref}$ .

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ?

### Comparison of Slope $R(N_f) \equiv T_c / \Lambda_{ref}(N_f)$



#### Using Larger $\beta_{ref}$

- The ruler  $\Lambda_{ref}$  becomes a UV quantity.
- Decreasing  $T_c/\Lambda_{ref}(N_f) \rightarrow \text{Consistent with FRG}$ .

Setups Chiral Phase Transition at  $N_f = 6$ Miransky-Yamawaki Diagram and Waling Signature Decreasing Nature of  $T_C(N_f)$ ?

### Comparison of Slope $R(N_f) \equiv T_c / \Lambda_{ref}(N_f)$



#### Using Larger $\beta_{ref}$

- The ruler  $\Lambda_{\rm ref}$  becomes a UV quantity.
- Decreasing  $T_c/\Lambda_{ref}(N_f) \rightarrow \text{Consistent with FRG}$ .

### **Table of Contents**

### Introduction

#### 2 Results

- Setups
- Chiral Phase Transition at  $N_f = 6$
- Miransky-Yamawaki Diagram and Waling Signature
- Decreasing Nature of  $T_c(N_f)$ ??

### **3** Summary and Future Works

### Summary

#### Summary

- The large  $N_f$  and finite T lattice gauge theory gives the interesting research fields of Beyond Miransky Scaling and Conformality, which are important in AdS/CFT, FRG, BSM-Phenomenology, and Graphene.
- In Miransky-Yamawaki Diagram, the thermal chiral transition would shrink to the bulk transition at larger  $N_f \longrightarrow$  Hunting of Conformal Window.
- The ratio  $T_c/\Lambda_L$  has started increasing around  $N_f = 6$ , which would imply the onset of walking dynamics.
- Using a larger  $\beta_{ref}$  (more UV) leads to a decreasing critical temperature,  $T_c/\Lambda_{ref}$ , which is consistent with FRG studies.

#### Future Works

- To set a scale  $a^{-1}$  and complete  $T N_f$  Phase Diagram.
- Critical behavior near the IR-Fixed Pt.
- The color SU( $N_c = 2$ ) with 8 flavors at finite T.

### Summary

#### Summary

- The large  $N_f$  and finite T lattice gauge theory gives the interesting research fields of Beyond Miransky Scaling and Conformality, which are important in AdS/CFT, FRG, BSM-Phenomenology, and Graphene.
- In Miransky-Yamawaki Diagram, the thermal chiral transition would shrink to the bulk transition at larger  $N_f \longrightarrow$  Hunting of Conformal Window.
- The ratio  $T_c/\Lambda_L$  has started increasing around  $N_f = 6$ , which would imply the onset of walking dynamics.
- Using a larger  $\beta_{ref}$  (more UV) leads to a decreasing critical temperature,  $T_c/\Lambda_{ref}$ , which is consistent with FRG studies.

#### **Future Works**

- To set a scale  $a^{-1}$  and complete  $T N_f$  Phase Diagram.
- Critical behavior near the IR-Fixed Pt.
- The color  $SU(N_c = 2)$  with 8 flavors at finite T.



## THANK YOU FOR YOUR ATTENTION!!

Kohtaroh Miura<sup>A</sup>, M. Lombardo<sup>A</sup>, E. Pallante<sup>B</sup> A. Deuzeman<sup>C</sup>, and T. Si Thermodynamic Study For Conformal Phase in Large  $N_F$  QCD