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Abstract

The Dirac field in 2+1 dimension in presence of a constant
magnetic field is an exactly solvable problem. If analysed in terms
of the degrees of freedom of the free field a pairing structure
emerges for any value of the mass, as shown long ago in a paper
with Francesca Marchetti. This provides an explanation for chiral
symmetry breaking in NJL models in presence of a magnetic field
and very weak nonlinearity. Such a phenomenon, studied by
Gusynin, Miransky and Shovkovy and called magnetic catalysis,
has acquired a novel interest in connection with the physics of
graphene.
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NJL model

The Lagrangian of the NJL model is

L = −ψ̄γµ∂µψ + g
[
(ψ̄ψ)2 − (ψ̄γ5ψ)2

]
. (1)

It is invariant under ordinary and chiral gauge transformations

ψ → eiαψ, ψ̄ → ψ̄e−iα (2)

ψ → eiαγ5ψ, ψ̄ → ψ̄eiαγ5 . (3)
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A simple mean field approximation gives the equation for the mass

m = 2g[< ψ̄ψ > −γ5 < ψ̄γ5ψ >] (4)

= −2g[trS(m)(0)− trγ5S
(m)(0)], (5)

where S(m) is the propagator of the Dirac field of mass m, or more
explicitely,

2π2

gΛ2
= 1− m2

Λ2
ln

(
1 +

Λ2

m2

)
, (6)

where Λ is the invariant cut-off. This equation is very similar to
the gap equation in BCS theory. If 2π2

gΛ2 < 1 there exists a solution
m > 0.
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The vacuum

|m >=
∏
p,s

{[1
2
(1 + βp)]

1
2 − [

1

2
(1− βp)]

1
2a(0)†

p,s b
(0)†
−p,s}|0 > (7)

where βp = |p|
Ep

, and Ep = (p2 +m2)
1
2 . The operators acting on

this vacuum for a particle or an antiparticle of mass m are related
to the zero mass operators by a Bogolyubov transformation

a(m)
p,s = [

1

2
(1 + βp)]

1
2a(0)

p,s + [
1

2
(1− βp)]

1
2 b

(0)†
−p,s (8)

b(m)
p,s = [

1

2
(1 + βp)]

1
2 b(0)p,s − [

1

2
(1− βp)]

1
2a

(0)†
−p,s (9)
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Magnetic catalysis
V. P. Gusynin, V. A. Miransky and I. A. Shovkovy, Phys. Rev. D. 52, 4718 (1995);
Phys. Rev. D. 52, 4747 (1995); Nucl. Phys. B462, 249 (1996).

NJL models, where SSB of chiral symmetry takes place for the
nonlinear coupling over a certain threshold, in presence of a
magnetic field exhibit SSB for any value of the coupling both in
2 + 1 and 3 + 1 dimensions. This phenomenon is called magnetic
catalysis. In 2 + 1 they found

m2
dyn = |eB|N

2
c g

2|eB|
4π2

, (10)

where Nc is the number of fermion colors, and

m2
dyn =

|eB|
π

exp

(
−4π2(1−G)

|eB|Ncg

)
, (11)

where G ≡ NcgΛ
2/(4π2), in (3+1) dimensions.
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The explanation provided by these authors emphasizes a
dimensional reduction taking place in this phenomenon

“The essence of the present effect is that in a constant magnetic
field, the dynamics of fermion pairing is one-dimensional: the
pairing takes place essentially for fermions in the (degenerate)
lowest Landau level.”.

We thought that relating the operators in presence of a magnetic
field to those in absence and calculating the new vacuum could
clarify further the phenomenon. It turned out that this problem
can be solved exactly by Bogolyubov transformations.
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The Dirac field in 2 + 1 dimensions

In the following we use units with ~ = c = 1 where c is the velocity
of light, as their values do not play a role in our discussion.
Consider the Lagrangian L:

L = ψ̄B(x) [γµDµ −m]ψB(x)

Dµ = ∂µ − eAµ ,
(12)

where ψ̄B(x) is the Dirac quantized field in presence of the vector
potential Aµ and e is the modulus of the electron charge. Since
the magnetic field is constant and homogeneous we can choose the
Landau gauge:

Aµ = −δµ1Bx2 . (13)

Notice that introducing the magnetic length l = 1/(eB)1/2 and
using it as a unit for the space time variables, the magnetic field
can be rescaled to the value 1.
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In 2 + 1 dimensions there are two inequivalent minimal versions of
the Dirac algebra

field is constant and homogeneous we can choose the Landau gauge:

Aµ = −δµ1Bx2 . (3)

In 2 + 1 dimensions there are two inequivalent minimal versions of the
Dirac algebra [2]:

{γµ, γν} = 2gµν µ = 0, 1, 2

γ0† = γ0 γi† = −γi i = 1, 2 .
(4)

In the following we shall use the representations:

γ̃0 = σ3 γ̃1 = iσ1 γ̃2 = iσ2 (5)

and

γ̂0 = −σ3 γ̂1 = −iσ1 γ̂2 = −iσ2 (6)

where σi are the Pauli matrices. The complex spinors associated with the
two minimal versions will be respectively indicated with ψ1(x) e ψ2(x).

A chiral version is obtained as the direct sum of the two inequivalent
irreducible representations (5) and (6):

γµ =

(
γ̃µ 0
0 γ̂µ

)
=

(
γ̃µ 0
0 −γ̃µ

)
ψ(x) =

(
ψ1(x)
ψ2(x)

)
. (7)

With this notation the lagrangian in the chiral version is connected to
the lagrangians in the two minimal versions by the following relationship:

L = L1 + L2 Li = ψ̄B
i (x) [iγ̃µDµ − αim] ψB

i (x) (8)

αi =

{
1 i = 1

−1 i = 2
ψ̄B

i (x) = ψB
i

†
(x)σ3 ∀i = 1, 2 . (9)

The two lagrangians L1 and L2 differ only for the sign of the mass term.
In the minimal versions both lagrangians L1 and L2 are invariant under

charge conjugation C, while the mass term changes sign under parity P and
time reversal T . In the minimal versions there is no generator of chiral
symmetry, that is there is no symmetry (except P and T ), that distinguishes
the theory with mass from the theory with zero mass.

In the chiral version the three discrete symmetries C, P and T are pre-
served and therefore the mass term breaks neither parity nor time reversal.
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The mass term has opposite sign in the two versions
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Introducing the following anticommuting matrices

γ3 = i

(
0 I

I 0

)
γ5 = iγ0γ1γ2γ3 = i

(
0 I

−I 0

)
. (14)

in the chiral version we can introduce a U(2) symmetry group

U(ω) ∈ U(2) : U(ω) = eiω
αTα α = 0, ..., 3 (15)

T0 = I T1 = γ5 T2 = −iγ3 T3 = γ3γ5 . (16)

which is broken by the mass term. The symmetry is not recovered
in the limit m→ 0. This is revealed by

lim
m→0

〈B|ψ̄B(x)ψB(x)|B〉 = −|eB|
2π

(17)
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The pairing structure of the vacuum induced by a
magnetic field in 2 + 1-dimensional Dirac field theory
G. Jona-Lasinio, F. M. Marchetti, Phys. Lett. B 459, 208 (1999).

The free Dirac field minimally coupled to a homogeneous magnetic
field can be written

ψB(x) =

(
ψB

1 (x)
ψB

2 (x)

)
(18)

ψB
1 (x) =

∞∑
n=0

∑
p1

{unp1(x)anp1 + vn−p1(x)b
†
np1
} (19)

ψB
2 (x) =

∞∑
n=0

∑
p1

{u(2)
np1

(x)cnp1 + v
(2)
n−p1

(x)d†np1
} (20)
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unp1(x) =
1√
lL1

e−Entep1x1

(
Anwn(ξp1

x2)
−Bnwn−1(ξ

p1
x2)

)
vnp1(x) =

1√
lL1

e+Entep1x1

(
Bnwn(ξp1

x2)
+Anwn−1(ξ

p1
x2)

) (21)

u(2)
np1

(x) = (−1)nvn−p1(−x) v(2)
np1

(x) = (−1)nun−p1(−x) (22)

An =

√
En +m

2En
Bn =

√
En −m

2En
(23)

En =
√
m2 + 2neB ξp1

x2
=
x2

l
+ lp1 =

√
eBx2 +

p1√
eB

(24)

wn(ξ) = cne
−ξ2/2Hn(ξ) =

(
2nn!

√
π
)−1/2

e−ξ2/2Hn(ξ) . (25)

The operators anp1 , bnp1 , ... satisfy the usual canonical
anticommutation relations and Hn(ξ) are the Hermite polynomials.
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One of the main properties of the theory in the minimal versions is
the spectrum asymmetry of the lowest level (called lowest Landau
level LLL). For example if m > 0 and eB > 0 the energy spectrum
is

En =
√

m2 + 2neB ξp1

x2 =
x2

l
+ lp1 =

√
eBx2 +

p1

√
eB

(19)

wn(ξ) = cne
−ξ2/2Hn(ξ) =

(
2nn!

√
π
)−1/2

e−ξ2/2Hn(ξ) . (20)

The operators anp1 , ..., dnp1 satisfy the usual canonical anticommutation re-
lations and Hn(ξ) are the Hermite polynomials. The case eB < 0 can be
obtained by applying the charge conjugation operator.

One of the main properties of the theory in the minimal versions is the
spectrum asymmetry concerning the lowest Landau level (LLL). This prop-
erty holds also for an inhomogeneous magnetic field [1, 8, 13]. For example, if
m > 0 (that is in the representation (5)), and if eB > 0, the energy spectrum
is described by:

E = ±
√

m2 + (2n + 1− σ)eB

{
σ = +1 if E > 0

σ = −1 if E < 0

where (1/2)σ are the eigenvalues of the spin operator S3 = (1/2)σ3. From
(16) u0p1 #= 0 and v0p1 ≡ 0. The situation is inverted in the representation
(6) (m < 0).

3 Vacuum state

The lagrangian, describing the Dirac field in presence of an external mag-
netic field, is bilinear in the fermionic field ψB(x), and we may expect that
the vacuum state of the theory can be calculated by an approach “ à la Bo-
goliubov”, that is by relating the fermionic field in the presence of a magnetic
field to the free field by means of a linear transformation. The calculation,
which we will now illustrate, will refer to the minimal version representation
(5), as the generalization to the chiral version is immediate.

The Dirac equations describing in 2 + 1 dimensions the free field and the
field in presence of the external field are first order differential equations, and
it is possible to impose the same initial condition:

ψ1(0,x) = ψB
1 (0,x) . (21)

For the free field we have the plane waves decomposition:

ψ1(x) =
∑

p

√
m

L1L2Ep

{
u(p)e−ip·xap + v(p)eip·xb†

p

}
(22)

u(p) =

√
Ep + m

2m




1

p2 − ip1

Ep + m



 v(p) =

√
Ep + m

2m




p2 + ip1

Ep + m
1



 (23)

5

The situation is inverted for the second minimal version
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The problem solved thirteen years ago was the calculation of the
formal relationship between the Dirac field in presence of magnetic
field and the free Dirac field,

ψ1(x) =
∑

p

√
m

L1L2Ep

{
u(p)e−p·xap + v(p)ep·xb†p

}
(26)

u(p) =

√
Ep +m

2m

(
1

p2−p1
Ep+m

)
v(p) =

√
Ep +m

2m

(
p2+p1
Ep+m

1

)
,

(27)
where Ep = (m2 + |p|2)1/2. Similarly for ψ2.
Following NJL we obtained the desired relationship by imposing
the same initial condition on the Dirac equations describing the
free field and the one in presence of the external magnetic field,

ψi(0, x) = ψB
i (0, x) i = 1, 2 . (28)
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Relationship between plane waves and Hermite functions

To connect the anp1 , bnp1 , ... operators in presence of the magnetic
field with the ap, bp of the free field, we need the relationship
between plane waves and Hermite functions

eip2x2 = e−il2p1p2
√

2π
∞∑

n=0

(i)nwn(ξp1
x2

)wn(lp2) (29)

wn(ξp1
x2

) =

√
2π(−i)nl

L2

∑
p2

wn(lp2)e
ip2x2eil

2p1p2 . (30)

which follow by formal analytic continuation to t = i from

√
π

∞∑
n=0

tnwn(x)wn(y) =
1√

1− t2
e

x2−y2

2
− (x−yt)2

1−t2 |t| < 1 (31)

Recall that ξp1
x2 = x2

l + lp1.
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Constructing the Hilbert space

There is a natural ambient space for the construction of the
vacuum of the Dirac field in 2 + 1 dimensions with constant
magnetic field. Let us define

Ap =

√
Ep +m

2Ep
(ap − Cpb

†
−p) (32)

Bp =

√
Ep +m

2Ep
(Cpa

†
p + b−p) , (33)

with

Cp =
p2 + ip1

Ep +m
. (34)

The operators Ap, A
†
p and Bp, B

†
p satisfy the usual canonical

anticommutation relations (CAR).
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The corresponding vacuum is

|0̂〉 =
∏
h

Eh +m

2Eh

(
1 + Cha

†
hb

†
−h

)
|0〉 . (35)

By applying the operators A†p, B
†
p to |0̂〉 we generate a new Fock

space where a first pairing appears. Notice that pairs carry a phase
which depends on the momentum.
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We next introduce the creation and destruction operators

ânp1 = A(fnp1) =
∑
p2

fnp1(p2)Ap

b̂n−p1 = B(−ifn−1 −p1) =
∑
p2

−ifn−1 −p1(p2)Bp ,
(36)

where
fnp1(p2) = in

√
2πle−l2p1p2wn(lp2) , (37)
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The operators anp1 , bnp1 describing Dirac particles in a magnetic
field are finally given by the Bogolyubov transformation{

anp1 = Anânp1 −Bnb̂
†
n−p1

bn−p1 = Anb̂n−p1 +Bnâ
†
np1

.
(38)

A similar analysis can be done for ψB
2 introducing operators ĉnp1

and d̂np1
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The complete expression of the vacuum

|B〉 =
∏
n≥1

∏
p1

(
An +Bnâ

†
np1
b̂†n−p1

)(
An −Bnĉ

†
np1
d̂†n−p1

)
|0̂〉 ,

(39)
where,

|0̂〉 =
∏
h

Eh +m

2Eh

(
1 + Cha

†
hb

†
−h

)(
1 + C∗

hc
†
hd

†
−h

)
|0〉 . (40)

We emphasize that this expression holds for any value of m. By
applying the conjugate of the operators defined in (38), and the
corresponding ones associated to ψ2, to the vacuum |B〉 we
generate the full Hilbert space of the Dirac field in a magnetic field.
A simple calculation shows that 〈0|0̂〉 = 0 and 〈0̂|B〉 = 0.
Therefore three Fock spaces orthogonal to each other are involved
in the diagonalization of the Hamiltonian of a Dirac field in
presence of a constant magnetic field in 2 + 1 dimensions.
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In order to clarify the meaning of the auxiliary operators let us
write the hamiltonian in presence of magnetic field in terms of
these operators

HB = Ĥ−
∞∑

n=1

∑
p1

√
2neB

(
â†np1

b̂†n−p1
+ b̂n−p1 ânp1

)
Ĥ ≡ m

∞∑
n=0

∑
p1

(
â†np1

ânp1 + b̂†np1
b̂np1

)
.

(41)

The hamiltonian Ĥ describes auxiliary particles with degenerate
energy m, that is the energy of the lowest Landau level. The
magnetic field induces creation and destruction of auxiliary
particle-antiparticle pairs and this removes the degeneracy giving
the usual Landau levels.
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It is easy to see that Ĥ does not depend on the magnetic field B.
Using the completeness of Hermite functions it can be rewritten as
m
∑

p(A
†
pAp +B†

pBp). A decomposition similar to (41) holds for
the free Hamiltonian of the massive field in NJL models without
magnetic field: the creation and destruction operators of the
massless field play the role of the hatted operators and the mass
replaces the magnetic field in the quadratic interaction.
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Conclusion

The magnetic catalysis appears as a special consequence of the
more general phenomenon represented by magnetic pairing. A
characteristic feature of SSB with a mechanism akin to
supeconductivity is a pairing of particles and antiparticles. This is
what happens in the NJL model where the pairing is due to the
attractive nonlinear interaction provided it is sufficiently strong.

We have shown that pairing is induced in a free Dirac field in 2 + 1
dimensions by a constant magnetic field for any value of the mass.
There is no surprise therefore that when we switch on the nonlinear
interaction in the limit of zero mass chiral SSB takes place even for
very small values of the coupling. In 2 + 1 dimensions the
dependence of the dynamical mass on the nonlinear coupling is
analytic.
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