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Part I. 1D electrons with modulated Rashba SO coupling
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We consider:

a. 1D quantum wire formed in a gated 2D quantum well supported by a semiconductor
heterostructure;

b. we assume that the electrons are ballistic; = [ ~ few microns;
c. the wire carries only one conduction channel;

The lattice Hamiltonian



The electrons in a 2D quantum well are subject to two types of spin-orbit interactions,
the Dresselhaus and Rashba interactions, both originating from the inversion asymmetry
of the potential

V(r) = Va(r) + Veu(r),
Hso = At (K X VVey(r)) -0 — b(E) - 0.

For 1D wire, when motion is restricted let say along Z axis

Hppr=H, + Hﬁ = kw(ﬁax + CVO'y) —

= — izn,aﬁ cj%a |:"}/D oas IR O'ZB] Cpp1.8 T H.c..

where vyp=0a"1, yr=aa™!, with a the lattice spacing.
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Here the Dresselhaus coupling vp is a material-specific parameter, while the Rashba
coupling
gammapr has complex dependence on

a) the ion distribution in the nearby doping layers
b) the relative asymmetry of the electron density at the two quantum well interfaces

c) and what is important for us, the applied gate electric field [Rashba 1960].

In the case of UNIFORM SO interaction the NON-interacting Hamiltonian H =
Hy + Hppr can be diagonalized by two rotations in the spin space.
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With this, we write the transformed Hamiltonian as
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V. Gritsev, G. Japaridze, M. Pletyukhov, and D. Baeriswyl , Phys. Rev. Lett. 94, 137207 (2005).
S. Gangadharaiah, J. Sun, and O. A. Starykh, Phys. Rev. B 78, 054436 (2008).
The Luttinger Liquid Phase:
Gapless Spin and Charge Excitations!
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e A: Diagonalization of the free Hamiltonian with Rashba term:

Rotation in the spin space = shift of the spectrum
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In what follows we will restrict consideration by the simple harmonic modulation

p(n) = po + pacos(Qonag)  vso(n) = Vg + v cos(Qonao)

Under the same rotation as in the uniform case the Hamiltonian can be rewritten in the
rotated 7 = +, — spin basis as following

H = —Z[t—zryR d,,T,LTdnHT—I—H.c.}
+ ZVR sin(26) (TdL,TdnH,_T — H.c.)
— ZVR n)T cos(20) (Tdn g — H.c.)

+ Z[NO s ! COS(QQR(I)]CZL Tdn ,T

n, T

+ _ZdnT n,T —Tdn,—T’



Non-interacting electrons U = 0 in absence of modulation v; = 1 =0

At 71 = pu1 = 0, the Hamiltonian can be easily diagonalized using the Fourier
transform to give
0 T
Z E dsz k,T

where
EY(k) = —2tcos|(k — Tqo)a] + o,

qo = arctan(vers/t)/a

E(k)




Four Fermi points
ki p = kp + T qo, kfpp = —kp+ Tqo (T = =)

0 _
where k7. = v /ayp.

Decomposition into right- and left-moving fields R_(x) and L_(x),
Ay = Va(@ TR (2) 4 e O (2),

the Hamiltonian takes the form H = [ dx (H4+ + H_), with

H, — / de{ — ivp(: Rl (2)0, R, (2): — :LL(2)0, L, (2):)

+ Treos(Qu)(e ™7 Rl (2)L, (x)+He) },

where vp = 2a+/t? + 73, and T'g = 1 — 271 sin(goa)e "™



Bosonization.

Using the standard mapping

UG v Ter(x)—Ur(x
R.(z) = e Vlpr () =0- ()]

U —1\/T|pr(x (x
L (z) = e Vlpr (@) +0-(@)]

s

where ¢, (x) and ¥-(x) are dual bosonic fields satisfying 0;, = vpd, 9,

H=Y, [da{ %[00 + (@upr)2] + Y2 cos| (Qo — 2K0)z + 60 + Vi, |

where, Mg = \/AQR — w1 Agcos(mv) + p? /4.

®o = arctan (’ul —2Ar COS(WU))

2A R sin(mv)



At Qo — 2kY% ~ O(1/ayp), both cosine term ~ Mpy is rapidly oscillating and average
to zero. Thus, in this limit the model describes free + and — bosons

H =3, [do{ %F[(0.:0:) + (0ur)?] |

At |Qo — 2k%| < O(1/ag) the component of the modulated Rashba coupling comes
into play. In this case the Hamiltonian reads

Hy =5, [ do { £ (00p)? + (0:9)2] = 2L - Dupr + 2 cos(vImor) |

where
pep = vp(2kp — Qo) /2.
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The total charge and the total spin carried by massive spinful fermions are defined as

1
Q = Ny + Ny, Sz:§(NT_Nl)



The MI transition becomes transparent if we introduce the charge and spin fields

Ye = 7(¢++¢) Ve ﬁ(9+—9—)
os = slor—w), Vs =s(04 —0-)

HAMILTONIAN
H:H3+Hc+Hcsa

He = [ do{ g0 + 00,7},
e = [ do{y 0 f (0,9,) },

H.s = /xcos QO—QkO]x—F\/ing)COS(\/igOS)



dw{;;;c wpe) + (0,0, }

de{ g f *(0,0,)? },

H.. = /xcos QO—QkO]er\/igpc)cos(\/igDs)

CBSOS

=
|
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The spin-charge coupling!
For (qo — 2kr)x > 1 the Rashba term OSCILLATES and is irrelevant!!!
For (qo — 2kp)xz < 1 the Rashba term is relevant!!!

Simultaneous generation of the Charge and Spin Gaps

The Luttinger-liquid - Nonmagnetic insulator transition!



At commensurate band-filling (Qo = 2k%) the spectrum is fully gapped and the
system relays in one of the it's potential minima:
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Set of minima of the effective electron-holon coupling potential
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e

Vs = cos(\/%gpc)cos(\/ﬂgps)



The Mean-Field bosonized Hamiltonian

Ve 1 1 2Kc
Hc — /dx{E [5(833906)2 + i(axﬁc)Q] — Meff \/ Taa:@c
_Me COS(\/Qﬂ'chbc)},

Tao

Hs = /dx{[%(@x%)Q —|—%(8x198)2] _ M COS(\/QT('KquS)}.

e

where

m.. = 2Mp - (cos(/2n K¢s)) m, = 2Mp - (cos(\/2n K .¢.)) ,

H. is the Hamiltonian of the Commensurate-Incommensurate transition
Japaridze and Nersesyan, JETF Pis'ma 27, 356 (1978);

Pokrovsky and Talapov, PRL 42, 65 (1979).
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Two relations by two Zamolodchikovs

In the case of the SG model, given by the Hamiltonian

H = /dz{%[(ax9)2+(8x¢)2]— me COS(W@}’

Taop

1. The soliton mass M is related with its bare value mg as
M/A = C(K) (mo/A)* 71,

where

A (gEn) [T - K/4)|FF
= Vil (%) [ OT (K /4) ]

and A is an energy cutoff.

Al. B. Zamolodchikov , Int. Jour. Mod. Phys. A 10, 1125-1150 (1995).



2. The vacuum expectation value of the cosine field is related to the

soliton mass M by

(cos(VETK @) = B(K)(M/A) />,

with
B(K) = [[(1/2+¢&/2)T(1—¢/2)] /22
[2 Sin(ﬂﬁ/Q)] K2 [(1 +Om20(1 — K/4)
4/ sin(m&)T'(K/4) ’

where £ = K/(4 - K) .

S. Lukyanov, A. Zamolodchikov, Nucl.Phys. B 493, 571 (1997).
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where

B(K.)
[C(K )] el

Ae =

Noninteracting particles:, K. = K, =1

and




The Single-particle gap

Muean = K(Ke, Ko)A (2Mp/N)Y/ A=K Ks),

with

Figure 1: The mean-field value of Mmean [meV] of the single-particle gap as a function of the parameters K. and fipoq in
the experimentally relevant parameter range 0.6 < K. < 1, Kg = 1.1, and with Ap = —2 meV, v = 0.04, A = 100
meV, and 1 meV < pmod < 10 meV.



EXPERIMENTAL CONSEQUENCES

A narrow InAs quantum wire with:

2

carrier density n. ~ 1 x 1012 cm~

effective mass m* ~ 0.4m. and
ar = (0.6 —4) x 107 eVm,

We find that for realistic values of the Coulomb repulsion
M, ~ 4meV

the characteristic length scale
£~ hvp /M. ~ 1um

This number does not fits easily the quantum ballistic regime of an

InAs quantum wire, with MF path 2 1.5 um



CONCLUSIONS:

1. we have analyzed the spin- and charge dynamics in a ballistic single-channel
quantum wire in the presence of a gate-controlled harmonically modulated Rashba spin-
orbit interaction with a concurrent a harmonic modulation of the local chemical potential.

2. Depending on the relation between the common wave number ¢ of the two
modulations, the Fermi momentum kg, and a parameter gy which encodes the strength
of the Dresselhaus and the uniform part of the Rashba interaction, the electrons in the
wire may form a metallic or an insulating state.

3. Specifically, and most interesting from the viewpoint of potential spintronics
applications, when |q¢ — 2kp|< O(1/a) and |q £+ 2qo|~ O(1/a) (with a the lattice
spacing), a nonmagnetic insulating state is formed, with an effective band gap which
depends on the amplitudes of the Rashba and chemical potential modulations as well as
on the strengths of the uniform Dresselhaus and Rashba interactions.



Part Il. Edge Dynamics in a Quantum Spin Hall State:

Effects from modulated Rashba Spin-Orbit Interaction

Anders Strom, Henrik Johannesson, and G. |. Japaridze,
Phys.Rev.Lett. 104 256804 (2010).

Quantum Spin Hall Effect

Vacuum

Topological insulator
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In what follows we will restrict consideration by the simple harmonic modulation

p(n) = po + pacos(Qonag)  vso(n) = Vg + v cos(Qonao)

Under the rotation d,, ; = %(cn,l —iCp 1) dp— = %(CM — icy, | ) the Hamiltonian can

be rewritten in the rotated 7 = +, — spin basis as following

H = -— Z {(t — 7:7")/%) d;gﬁdnﬂﬁ + H.c.]
+ ivp Z cos(Qona) (defmdnﬂﬁ — H.c.)
+ Z[MO + {1 COS(QOna)]dL,Tdn,T

n,t

| _L E t AT
9 £ dn,Tdn,T dn,—Td’I’L,—T'



Decomposition into right- and left-moving fields R, (z) and L, (z),
d, . — ﬁ(ei(kOF+QO)xR+(a:) 4 e—i(k%+qo)wL_($))7
the Hamiltonian takes the form

Ho = ~ive [ dz (00,0, ~ v]orw, )

g
Hi=ga [ dowlowlv,, H =" [ dool,olv.,



We now add a Rashba SO interaction

Hp = /dx oz(:c)\IJL(a:)JZB ko U s(z) + hec.,

HRz/da: a(x) ((@;wbwl — ¢¥&E¢l) e 2FFT 4 ] c.



Bosonization.

Using the standard mapping

e_z Vv 47T()0L,T(x)

h
Py
=

|

3

27TCLO

In terms of the charge and spin fields we have

drt + O, = V2(¢e — 0,)

and

Or| + Or1 = V2(¢e + 05).



Hence, to lowest order,

1. perturbation with a uniform Rashba interaction has no influence on the low-energy
properties.

2. The lowest-order effect produced by Hp for any a(x) can at most be of O(a?).

3.  For noninteracting electrons, shows that an (O(&?) process is irrelevant (in
renormalization-group (RG) sense) implying robustness of the edge states against
perturbations with a Rashba interaction, even when spatially fluctuating.



BOSONIZATION

Ho+ Hy+ Hy = [dr(55(0:0) + £(9.0)?),
HR—\/—deZC[ ) (0, )“/E"Urh.c.},

with

K = ((mvp + g5 — ga)/(mop + g5 + ga))*/?

To pass to a Lagrangian formalism, we use that II = /K 0,60 serves as conjugate
momentum to ¢/+/ K and integrate out Il from the partition function Z to arrive at



Z ~ /Dgpe—s[@],

with the Euclidean action

1 1 1 |
S[SD] — 5/ dxdr (;(87'@)2 + U(agg@)2) — %/dxdT (6(:13)6_@)?(90 + hC) .
Here |
{(r) = 1/(4Kvk) Z Guky, — 2kp)a(kyy — 2kp) x ellknthn)
Mg = V167K
and

pv=0/VK



By averaging over the randomness in S[p], using the Gaussian statistics

Pl(@)] = exp| - D;" [ deg(w)¢(a)]

so that
E(@) =0,  (§"(2)é(z")) = Ded(x — ')

the replica method vyields the disorder-averaged action

Snlp] = —Z / dwdT (8-¢4)° (6’9690@)2)

- zdrdr’'cos|\ g (o (z,7)—0p(x, 7’
<zm>2§;/d drd'cos|w(pale.m)—po(.r)

where a,b =1, ...,n are the replica indices and

D¢ =n;/(8rK*v*) (Rea*(k))



The second-order RG equations of D¢, v, and K, generated by the scaling (7,x) —
(1,2) exp(—¥¢) (£>0), are given by

OD¢/0¢ = (3 —8K)Dg,
8@/86 = —ZUKD&
OK/o¢ = —2K°?Dg

The Rashba coupling grows under renormalization when K < K. = 3/8, driving a
transition to an Anderson-type localized state. B. A. Bernevig et al., Science 314, 1757

(2006).



Importantly, to find out whether the edge electrons of a given experimental sample
do become localized, one must test for the condition &.. < L, with &,. the localization
length and L is the micron-sized length of the sample.

To make an estimate of . for a HgTe QW we need to put numbers on our
parameters.

8.2 0.25 K, 0.3 0.35

The edge localization length &), for different values of the interaction parameter Kj.

The dashed line marks the length of a micron-sized HgTe QW sample



In the case of periodically modulated Rashba coupling we take a(x) = A cos(Qx) the action in
becomes that of the sine-Gordon model.

Sle] =

with g = A?/ (4 K k*v).

1

2/ dxdT (%(6%90)2 + v(0zp) — 29 COS()\KSO))a

6 ‘ ‘
—hA =7x10"eVm
—hA =5x 10" eVm
4 NS R v |m—hA=3x10"eVm
\\ \‘\ \\
27 \\\\ \\\ \\\ |
8 | “T--n T -~m “~g
2 0.3 K 0.4 0.5

(1)

The gap A for different Rashba amplitudes 7A and values of K. The circles and squares mark the smallest gaps for HgTe

QW samples of length 1 um and 20 pum respectively.



One additional different and interesting Laboratory to understand

the character of the transition

from the Mott insulating phase caused by a periodic Rashba modulation

to the Anderson-type localization



Thank you for your attention!



