3D Topological States of Matter and the Vortex Quantum Hall Effect

Frascati, September 2011

Maria Cristina Diamantini

University of Perugia, Italy

coll. P. Sodano and C.A. Trugenberger; arXiv:1104.2485; arXiv:1105.5375 to appear in PRB

Frascati, September 2011 - p. 1/27

Introduction

- Introduction
- 3D topological states of matter and BF theory

- Introduction
- 3D topological states of matter and BF theory
- Phases of BF model in (3+1) dimensions
 - no condensation
 - electric condensation phase
 - magnetic condensation phase

- Introduction
- 3D topological states of matter and BF theory
- Phases of BF model in (3+1) dimensions
 - no condensation
 - electric condensation phase
 - magnetic condensation phase
- Effective electromagnetic action induced by the condensation of the topological defects via Julia-Toulouse mechanism

- Introduction
- 3D topological states of matter and BF theory
- Phases of BF model in (3+1) dimensions
 - no condensation
 - electric condensation phase
 - magnetic condensation phase
- Effective electromagnetic action induced by the condensation of the topological defects via Julia-Toulouse mechanism
- Dyonic vortex condensate and vortex quantum Hall effect

- Introduction
- 3D topological states of matter and BF theory
- Phases of BF model in (3+1) dimensions
 - no condensation
 - electric condensation phase
 - magnetic condensation phase
- Effective electromagnetic action induced by the condensation of the topological defects via Julia-Toulouse mechanism
- Dyonic vortex condensate and vortex quantum Hall effect
- Conclusions

Topological States of Matter

Quantum degrees of freedom organize themselves into robust emergent macroscopic states.

Topological States of Matter

- Quantum degrees of freedom organize themselves into robust emergent macroscopic states.
- Topological order: new quantum order not based on SSB (Wen):
 - gapped in the bulk;
 - gapless edge excitations.

Topological States of Matter

- Quantum degrees of freedom organize themselves into robust emergent macroscopic states.
- Topological order: new quantum order not based on SSB (Wen):
 - gapped in the bulk;
 - gapless edge excitations.
- Low energy effective field theories for such states involve topological field theories
 - background independent;
 - ground state degeneracy;
 - quasiparticles have fractional statistics.

D Chern-Simons action describes incompressible quantum Hall fluids and their edge excitations

- D Chern-Simons action describes incompressible quantum Hall fluids and their edge excitations
- PT breaking

- D Chern-Simons action describes incompressible quantum Hall fluids and their edge excitations
- PT breaking
- Recently new topological phases of matter with time-reversal symmetry have been discovered (Kane, Mele, Fu, Moore, Balents, Zhang, König): topological insulators

- D Chern-Simons action describes incompressible quantum Hall fluids and their edge excitations
- PT breaking
- Recently new topological phases of matter with time-reversal symmetry have been discovered (Kane, Mele, Fu, Moore, Balents, Zhang, König): topological insulators
- Topological insulators are materials that are insulating in the bulk but support conducting edge excitations and can exist also in 3D (Fu, Kane, Mele, Moore, Balents)

- D Chern-Simons action describes incompressible quantum Hall fluids and their edge excitations
- PT breaking
- Recently new topological phases of matter with time-reversal symmetry have been discovered (Kane, Mele, Fu, Moore, Balents, Zhang, König): topological insulators
- Topological insulators are materials that are insulating in the bulk but support conducting edge excitations and can exist also in 3D (Fu, Kane, Mele, Moore, Balents)
- First experimental observation in 2008 (Hsieh et al.)

- 3D: weak and strong topological insulators:
 - weak: can be formed by layering 2D systems; not stable to disorder
 - strong: topologically non-trivial; protected metallic surface

- 3D: weak and strong topological insulators:
 - weak: can be formed by layering 2D systems; not stable to disorder
 - strong: topologically non-trivial; protected metallic surface
- Which is the topological field theory that describes this new phase of matter? Topological BF action

- 3D: weak and strong topological insulators:
 - weak: can be formed by layering 2D systems; not stable to disorder
 - strong: topologically non-trivial; protected metallic surface
- Which is the topological field theory that describes this new phase of matter? Topological BF action
- BF action was first proposed as a field theory description of topological phases of condensed matter systems in 1996 (Sodano, Trugenberger, MCD; recently reintroduced by Moore and Cho):
 - topological superconductors;
 - topological insulators;
 - topological confinement.

Topological ground state

- Topological ground state
- Excitations are described by conserved matter currents the can be written as the curl of a U(1) gauge field: 2D $j_{\mu} \propto \epsilon_{\mu\nu\alpha}\partial_{\nu}b_{\alpha}$ = charge matter current

- Topological ground state
- Excitations are described by conserved matter currents the can be written as the curl of a U(1) gauge field: 2D $j_{\mu} \propto \epsilon_{\mu\nu\alpha}\partial_{\nu}b_{\alpha}$ = charge matter current
- Topological field theory at low energy: $S = \frac{k}{4\pi} \int d^3x \ b_{\mu} \epsilon_{\mu\nu\alpha} \partial_{\nu} b_{\alpha}, \text{ Chern-Simons action, PT}$ breaking

- Topological ground state
- Excitations are described by conserved matter currents the can be written as the curl of a U(1) gauge field: 2D $j_{\mu} \propto \epsilon_{\mu\nu\alpha}\partial_{\nu}b_{\alpha}$ = charge matter current
- Topological field theory at low energy: $S = \frac{k}{4\pi} \int d^3x \ b_{\mu} \epsilon_{\mu\nu\alpha} \partial_{\nu} b_{\alpha}, \text{ Chern-Simons action, PT}$ breaking
- But $S = \frac{k}{2\pi} \int d^3x \ a_\mu \epsilon_{\mu\nu\alpha} \partial_\nu b_\alpha$ PT invariant if a_μ is a vector; mixed or doubled Chern-Simons, $U(1) \times U(1)$ gauge symmetry (Sodano, Trugenberger, MCD; Freedman et al; Wen)

- Topological ground state
- Excitations are described by conserved matter currents the can be written as the curl of a U(1) gauge field: 2D $j_{\mu} \propto \epsilon_{\mu\nu\alpha}\partial_{\nu}b_{\alpha}$ = charge matter current
- Topological field theory at low energy: $S = \frac{k}{4\pi} \int d^3x \ b_{\mu} \epsilon_{\mu\nu\alpha} \partial_{\nu} b_{\alpha}, \text{ Chern-Simons action, PT}$ breaking
- But $S = \frac{k}{2\pi} \int d^3x \ a_\mu \epsilon_{\mu\nu\alpha} \partial_\nu b_\alpha$ PT invariant if a_μ is a vector; mixed or doubled Chern-Simons, $U(1) \times U(1)$ gauge symmetry (Sodano, Trugenberger, MCD; Freedman et al; Wen)
- Model for Josephson Junction arrays (Sodano, Trugenberger, MCD); $\phi_{\mu} \propto \epsilon_{\mu\nu\alpha}\partial_{\nu}a_{\alpha}$ = vortex matter current

Natural generalization:

 $j_{\mu} \propto \epsilon_{\mu\nu\alpha\beta}\partial_{\nu}b_{\alpha\beta}$, charge fluctuations $\phi_{\mu\nu} \propto \epsilon_{\mu\nu\alpha\beta}\partial_{\alpha}a_{\beta}$, magnetic fluctuations

Natural generalization:

 $j_{\mu} \propto \epsilon_{\mu\nu\alpha\beta}\partial_{\nu}b_{\alpha\beta}$, charge fluctuations $\phi_{\mu\nu} \propto \epsilon_{\mu\nu\alpha\beta}\partial_{\alpha}a_{\beta}$, magnetic fluctuations Low energy topological field theory:

$$S = \frac{k}{2\pi} \int d^4x \ b_{\mu\nu} \epsilon_{\mu\nu\alpha\beta} \partial_\alpha a_\beta \ , \text{BF action}$$

Natural generalization:

 $j_{\mu} \propto \epsilon_{\mu\nu\alpha\beta}\partial_{\nu}b_{\alpha\beta}$, charge fluctuations $\phi_{\mu\nu} \propto \epsilon_{\mu\nu\alpha\beta}\partial_{\alpha}a_{\beta}$, magnetic fluctuations • Low energy topological field theory:

$$S = \frac{k}{2\pi} \int d^4x \ b_{\mu\nu} \epsilon_{\mu\nu\alpha\beta} \partial_{\alpha} a_{\beta} , \text{BF action}$$

In 2D reduces to the mixed Chern-Simons term

Natural generalization:

_

 $j_{\mu} \propto \epsilon_{\mu\nu\alpha\beta}\partial_{\nu}b_{\alpha\beta}$, charge fluctuations $\phi_{\mu\nu} \propto \epsilon_{\mu\nu\alpha\beta}\partial_{\alpha}a_{\beta}$, magnetic fluctuations Low energy topological field theory:

$$S = \frac{k}{2\pi} \int d^4x \ b_{\mu\nu} \epsilon_{\mu\nu\alpha\beta} \partial_{\alpha} a_{\beta} , \text{BF action}$$

In 2D reduces to the mixed Chern-Simons term
 In D+1 S = \frac{k}{2\pi} \int_{M_{D+1}} a_p \wedge db_{D-p}

Natural generalization:

 $j_{\mu} \propto \epsilon_{\mu\nu\alpha\beta}\partial_{\nu}b_{\alpha\beta}$, charge fluctuations

 $\phi_{\mu\nu} \propto \epsilon_{\mu\nu\alpha\beta}\partial_{\alpha}a_{\beta}$, magnetic fluctuations

Low energy topological field theory:

$$S = \frac{k}{2\pi} \int d^4x \ b_{\mu\nu} \epsilon_{\mu\nu\alpha\beta} \partial_\alpha a_\beta \ , \text{BF action}$$

- In 2D reduces to the mixed Chern-Simons term
- In D+1 $S = \frac{k}{2\pi} \int_{M_{D+1}} a_p \wedge db_{D-p}$
- In application to condensed matter we are interested in the case in which $p = 1 \Rightarrow a_1$ and b_{D-1}

BF Theory in (D+1)-dimensions

$$S_{TM} = \int_{M_{D+1}} \frac{k}{2\pi} a_1 \wedge db_{D-1} + (S_{BF})$$

$$\frac{-1}{2e^2}da_1 \wedge *da_1 + \frac{(-1)^{D-1}}{2g^2}db_{D-1} \wedge *db_{D-1}$$

where k is a dimensionless parameter.

$$[e^2] = m^{-D+3} \ [g^2] = m^{D-1}$$

BF Theory in (D+1)-dimensions

$$S_{TM} = \int_{M_{D+1}} \frac{k}{2\pi} a_1 \wedge db_{D-1} + (S_{BF})$$

$$\frac{-1}{2e^2}da_1 \wedge *da_1 + \frac{(-1)^{D-1}}{2g^2}db_{D-1} \wedge *db_{D-1}$$

where k is a dimensionless parameter.

•
$$[e^2] = m^{-D+3}$$
 $[g^2] = m^{D-1}$

9 3+1

- $\phi_2 = *da_1$ = vortex fluctuations, a_1 is a vector;
- $j_1 = *db_2$ = charge fluctuations, b_2 is a pseudotensor;

BF Theory in (D+1)-dimensions

$$S_{TM} = \int_{M_{D+1}} \frac{k}{2\pi} a_1 \wedge db_{D-1} + (S_{BF})$$

$$\frac{-1}{2e^2}da_1 \wedge *da_1 + \frac{(-1)^{D-1}}{2g^2}db_{D-1} \wedge *db_{D-1}$$

where k is a dimensionless parameter.

$$[e^2] = m^{-D+3} \ [g^2] = m^{D-1}$$

9 3+1

- $\phi_2 = *da_1$ = vortex fluctuations, a_1 is a vector;
- $j_1 = *db_2$ = charge fluctuations, b_2 is a pseudotensor;
- S_{TM} is PT invariant

• Topological mass $m = \frac{keg}{2\pi}$, it plays the role of the gap characterizing topological states of matter

- Topological mass $m = \frac{keg}{2\pi}$, it plays the role of the gap characterizing topological states of matter
- Ground state degeneracy (Bergeron, Semenoff, Szabo): $k = k_1/k_2 \implies |k_1k_2I|^{N_p}$, I = determinant of the intersection matrix between p-cycles and (D-p)-cycles and N_p is the rank of the matrix (e.g. D = 2, $N_p = 2g$, g =genus, $N_p = 2$ for the torus)

- Topological mass $m = \frac{keg}{2\pi}$, it plays the role of the gap characterizing topological states of matter
- Ground state degeneracy (Bergeron, Semenoff, Szabo): $k = k_1/k_2 \implies |k_1k_2I|^{N_p}$, I = determinant of the intersection matrix between p-cycles and (D-p)-cycles and N_p is the rank of the matrix (e.g. D = 2, $N_p = 2g$, g =genus, $N_p = 2$ for the torus)
- BF theory provides a generalization of fractional statistics to arbitrary dimensions (Semenoff, Szabo), given by the adiabatic transport of hypersurface Σ_p around a Σ_{D-p} hypersurface

- Topological mass $m = \frac{keg}{2\pi}$, it plays the role of the gap characterizing topological states of matter
- Ground state degeneracy (Bergeron, Semenoff, Szabo): $k = k_1/k_2 \implies |k_1k_2I|^{N_p}$, I = determinant of the intersection matrix between p-cycles and (D-p)-cycles and N_p is the rank of the matrix (e.g. D = 2, $N_p = 2g$, g =genus, $N_p = 2$ for the torus)
- BF theory provides a generalization of fractional statistics to arbitrary dimensions (Semenoff, Szabo), given by the adiabatic transport of hypersurface Σ_p around a Σ_{D-p} hypersurface
- **statistical parameter** $\frac{2\pi}{k}(-1)^{p(D-p)}$

- Topological mass $m = \frac{keg}{2\pi}$, it plays the role of the gap characterizing topological states of matter
- Ground state degeneracy (Bergeron, Semenoff, Szabo): $k = k_1/k_2 \implies |k_1k_2I|^{N_p}$, I = determinant of the intersection matrix between p-cycles and (D-p)-cycles and N_p is the rank of the matrix (e.g. D = 2, $N_p = 2g$, g =genus, $N_p = 2$ for the torus)
- BF theory provides a generalization of fractional statistics to arbitrary dimensions (Semenoff, Szabo), given by the adiabatic transport of hypersurface Σ_p around a Σ_{D-p} hypersurface
- **statistical parameter** $\frac{2\pi}{k}(-1)^{p(D-p)}$
- Supports edges excitations (Momen, Balachandran; Cho and Moore)
 Frascati, September 2011 – p. 9/27
Sodano, Trugenberger, MCD; arXiv:1104.2485; arXiv:1105.5375

● $U(1) \times U(1)$ gauge symmetry: compact

- $U(1) \times U(1)$ gauge symmetry: compact
- Need of an UV regularization

- $U(1) \times U(1)$ gauge symmetry: compact
- Need of an UV regularization
- Presence of topological defects:
 - electric topological defects are string-like objects described by a singular 1-form Q_1 and coupled to a_1 ;
 - magnetic topological defects are closed surfaces described by a singular 2-form M_2 and coupled to b_2

- $U(1) \times U(1)$ gauge symmetry: compact
- Need of an UV regularization
- Presence of topological defects:
 - electric topological defects are string-like objects described by a singular 1-form Q_1 and coupled to a_1 ;
 - magnetic topological defects are closed surfaces described by a singular 2-form M_2 and coupled to b_2
- They describe localized charges and vortices that have structure on the scale of the UV cutoff

- $U(1) \times U(1)$ gauge symmetry: compact
- Need of an UV regularization
- Presence of topological defects:
 - electric topological defects are string-like objects described by a singular 1-form Q_1 and coupled to a_1 ;
 - magnetic topological defects are closed surfaces described by a singular 2-form M_2 and coupled to b_2
- They describe localized charges and vortices that have structure on the scale of the UV cutoff
- The phase structure is determined by the condensation (lack of) of topological defects

2D: Chern-Simons dominates at long distance, because $[e^2] = m$

- 2D: Chern-Simons dominates at long distance,
 because $[e^2] = m$
- 3D: there is another marginal term that co-determines the IR behavior, the Maxwell term, $[e^2] = m^0$:

$$S = \frac{ik}{2\pi} \int d^4x a_\mu \epsilon_{\mu\nu\alpha\beta} \partial_\nu b_{\alpha\beta} + \int d^4x \left(\frac{1}{2e^2\lambda} \mathbf{e}^2 + \frac{1}{2e^2\eta} \mathbf{b}^2\right)$$

- 2D: Chern-Simons dominates at long distance,
 because $[e^2] = m$
- 3D: there is another marginal term that co-determines the IR behavior, the Maxwell term, $[e^2] = m^0$:

$$S = \frac{ik}{2\pi} \int d^4x a_\mu \epsilon_{\mu\nu\alpha\beta} \partial_\nu b_{\alpha\beta} + \int d^4x \left(\frac{1}{2e^2\lambda} \mathbf{e}^2 + \frac{1}{2e^2\eta} \mathbf{b}^2\right)$$

• e and b are the effective electric and magnetic fields constructed from the gauge field a_{μ}

- 2D: Chern-Simons dominates at long distance,
 because $[e^2] = m$
- 3D: there is another marginal term that co-determines the IR behavior, the Maxwell term, $[e^2] = m^0$:

$$S = \frac{ik}{2\pi} \int d^4x a_\mu \epsilon_{\mu\nu\alpha\beta} \partial_\nu b_{\alpha\beta} + \int d^4x \left(\frac{1}{2e^2\lambda} \mathbf{e}^2 + \frac{1}{2e^2\eta} \mathbf{b}^2\right)$$

- e and b are the effective electric and magnetic fields constructed from the gauge field a_{μ}
- **add an UV regulator for Gaussian integral:** $\int d^4x \left[\frac{1}{2g^2 \eta} f_0 f_0 + \frac{1}{2g^2 \lambda} f_i f_i \right],$ $f^{\mu} \equiv \frac{1}{6} \epsilon^{\mu\nu\alpha\beta} f_{\nu\alpha\beta}, f_{\mu\nu\rho} = \partial_{\mu} b_{\nu\rho} + \partial_{\nu} b_{\rho\mu} + \partial_{\rho} b_{\mu\nu}$

- 2D: Chern-Simons dominates at long distance,
 because $[e^2] = m$
- 3D: there is another marginal term that co-determines the IR behavior, the Maxwell term, $[e^2] = m^0$:

$$S = \frac{ik}{2\pi} \int d^4x a_\mu \epsilon_{\mu\nu\alpha\beta} \partial_\nu b_{\alpha\beta} + \int d^4x \left(\frac{1}{2e^2\lambda} \mathbf{e}^2 + \frac{1}{2e^2\eta} \mathbf{b}^2\right)$$

- e and b are the effective electric and magnetic fields constructed from the gauge field a_{μ}
- **add an UV regulator for Gaussian integral:** $\int d^4x \left[\frac{1}{2g^2 \eta} f_0 f_0 + \frac{1}{2g^2 \lambda} f_i f_i \right],$ $f^{\mu} \equiv \frac{1}{6} \epsilon^{\mu\nu\alpha\beta} f_{\nu\alpha\beta}, f_{\mu\nu\rho} = \partial_{\mu} b_{\nu\rho} + \partial_{\nu} b_{\rho\mu} + \partial_{\rho} b_{\mu\nu}$

This term is IR irrelevant, describes massive modes that live on scale $\ll \frac{1}{m} = \frac{\pi}{keg\sqrt{\lambda\eta}}$

- This term is IR irrelevant, describes massive modes that live on scale $\ll \frac{1}{m} = \frac{\pi}{keg\sqrt{\lambda\eta}}$
- What are λ and η? Coupling to an external e.m. field A_μ
 iej_μA_μ

- This term is IR irrelevant, describes massive modes that live on scale $\ll \frac{1}{m} = \frac{\pi}{keq\sqrt{\lambda n}}$
- What are λ and η? Coupling to an external e.m. field A_μ
 iej_μA_μ
- Gaussian integration over a_{μ} and $b_{\alpha\beta}$ induces a quadratic term for A_{μ} , at long distances ($\gg \frac{1}{m}$):

$$S(A) = \int d^4x \frac{1}{2} \left[\frac{1}{\lambda} \mathbf{E}^2 + \frac{1}{\eta} \mathbf{B}^2 \right]$$

- This term is IR irrelevant, describes massive modes that live on scale $\ll \frac{1}{m} = \frac{\pi}{keq\sqrt{\lambda n}}$
- What are λ and η? Coupling to an external e.m. field A_μ
 iej_μA_μ
- Gaussian integration over a_{μ} and $b_{\alpha\beta}$ induces a quadratic term for A_{μ} , at long distances ($\gg \frac{1}{m}$):

$$S(A) = \int d^4x \frac{1}{2} \left[\frac{1}{\lambda} \mathbf{E}^2 + \frac{1}{\eta} \mathbf{B}^2 \right]$$

The model describes a topological insulator (Moore)

- This term is IR irrelevant, describes massive modes that live on scale $\ll \frac{1}{m} = \frac{\pi}{keq\sqrt{\lambda n}}$
- What are λ and η? Coupling to an external e.m. field A_μ
 iej_μA_μ
- Gaussian integration over a_{μ} and $b_{\alpha\beta}$ induces a quadratic term for A_{μ} , at long distances ($\gg \frac{1}{m}$):

$$S(A) = \int d^4x \frac{1}{2} \left[\frac{1}{\lambda} \mathbf{E}^2 + \frac{1}{\eta} \mathbf{B}^2 \right]$$

- The model describes a topological insulator (Moore)
- $\epsilon = \frac{1}{\lambda}$ electric permittivity; $\mu = \eta$ magnetic permeability

• Add a T-breaking term: $i\phi\phi^{\mu\nu}F_{\mu\nu}$, $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$

- Add a T-breaking term: $i\phi\phi^{\mu\nu}F_{\mu\nu}$, $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$
- Integration over matter fields gives:

$$S \to S = \int d^4x \frac{i\theta}{16\pi^2} F_{\mu\nu} \tilde{F}^{\mu\nu} = \int d^4x \frac{i\theta}{4\pi^2} \mathbf{E} \cdot \mathbf{B} \ , \theta = \frac{ke\phi}{2}$$

- Add a T-breaking term: $i\phi\phi^{\mu\nu}F_{\mu\nu}$, $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$
- Integration over matter fields gives:

$$S \to S = \int d^4x \frac{i\theta}{16\pi^2} F_{\mu\nu} \tilde{F}^{\mu\nu} = \int d^4x \frac{i\theta}{4\pi^2} \mathbf{E} \cdot \mathbf{B} \ , \theta = \frac{ke\phi}{2}$$

• T-invariance of the partition function \Rightarrow Dirac quantization condition $\frac{ke\phi}{2\pi}$ = integer

- Add a T-breaking term: $i\phi\phi^{\mu\nu}F_{\mu\nu}$, $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$
- Integration over matter fields gives:

$$S \to S = \int d^4x \frac{i\theta}{16\pi^2} F_{\mu\nu} \tilde{F}^{\mu\nu} = \int d^4x \frac{i\theta}{4\pi^2} \mathbf{E} \cdot \mathbf{B} \ , \theta = \frac{ke\phi}{2}$$

- T-invariance of the partition function \Rightarrow Dirac quantization condition $\frac{ke\phi}{2\pi}$ = integer
- This term is present in strong topological insulators

- Add a T-breaking term: $i\phi\phi^{\mu\nu}F_{\mu\nu}$, $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$
- Integration over matter fields gives:

$$S \to S = \int d^4x \frac{i\theta}{16\pi^2} F_{\mu\nu} \tilde{F}^{\mu\nu} = \int d^4x \frac{i\theta}{4\pi^2} \mathbf{E} \cdot \mathbf{B} \ , \theta = \frac{ke\phi}{2}$$

- T-invariance of the partition function \Rightarrow Dirac quantization condition $\frac{ke\phi}{2\pi}$ = integer
- This term is present in strong topological insulators
- It describes magnetoelectric polarizability

Phase structure analysis

Lattice regularization: hypercubic lattice in four Euclidean dimensions with lattice spacings l

Phase structure analysis

- Lattice regularization: hypercubic lattice in four Euclidean dimensions with lattice spacings l
- Compactness imply that gauge variables become angular variables: periodicity

Phase structure analysis

- Lattice regularization: hypercubic lattice in four Euclidean dimensions with lattice spacings l
- Compactness imply that gauge variables become angular variables: periodicity
- To implement periodicity one has to introduce two integer forms Q_1 and M_2 in the Euclidean partition function

$$S \to S + \int_{M_{3+1}} a_1 \wedge *Q_1 + b_2 \wedge *M_2$$

- Q_1 = closed electric loops;
- M_2 = closed magnetic surfaces.

- Analysis based on:
 - free energy arguments, however an analytic expression is not known for the entropy of random surfaces ⇒ qualitative argument;
 - expectation value of Wilson loop, L_W , for an electric charge q and 't Hooft surface, S_H , for a vortex line with flux ϕ .

- Analysis based on:
 - free energy arguments, however an analytic expression is not known for the entropy of random surfaces ⇒ qualitative argument;
 - expectation value of Wilson loop, L_W , for an electric charge q and 't Hooft surface, S_H , for a vortex line with flux ϕ .
- e and α = ml ≥ O(1) are fixed parameters, vary the dimensionless parameters k, λ(1/ε) and η(μ):
 - $k^2\lambda \ll \alpha^2/e^2$ and $\eta \ll \pi^2/e^2$ electric condensation phase;
 - $k^2\lambda \gg \alpha^2/e^2$ and $\eta \gg \pi^2/e^2$ magnetic condensation phase;
 - in between both types of topological excitations are dilute: topological insulating phase.

- Express L_W and S_H in term of external gauge potentials A_{μ} and $B_{\mu\nu}$ and compute the induced charge and vortex current:
 - $j_{\mu}^{\text{ind}} \propto A_{\mu}$: London equation for induced charges current, perfect conductivity and photon mass in the charge condensation phase;
 - $\phi_{\mu\nu}^{\rm ind} \propto B_{\mu\nu}$: perfect vortex conductivity, electric screening and a photon mass in the magnetic condensation phase

- Express L_W and S_H in term of external gauge potentials A_{μ} and $B_{\mu\nu}$ and compute the induced charge and vortex current:
 - $j_{\mu}^{\text{ind}} \propto A_{\mu}$: London equation for induced charges current, perfect conductivity and photon mass in the charge condensation phase;
 - $\phi_{\mu\nu}^{\text{ind}} \propto B_{\mu\nu}$: perfect vortex conductivity, electric screening and a photon mass in the magnetic condensation phase
- T = 0 quantum phase structure:
 - $\epsilon \gg \frac{k^2 e^2}{\alpha^2}$, $\mu \ll \frac{\pi^2}{e^2} \to \text{top. superconductor}$
 - intermediate regime \rightarrow top. insulator

•
$$\epsilon \ll \frac{k^2 e^2}{\alpha^2}$$
, $\mu \gg \frac{\pi^2}{e^2} \to \text{top. confinement}$

- In conventional superconductors, photons acquire a mass through SSB.
 - What is the corresponding effective action in topological superconductors?
 - What is the fate of the photon in the topological confinement phase?

- In conventional superconductors, photons acquire a mass through SSB.
 - What is the corresponding effective action in topological superconductors?
 - What is the fate of the photon in the topological confinement phase?
- Need to compute the effective electromagnetic action induced by the condensation of the topological defects in these new phases of matter

- In conventional superconductors, photons acquire a mass through SSB.
 - What is the corresponding effective action in topological superconductors?
 - What is the fate of the photon in the topological confinement phase?
- Need to compute the effective electromagnetic action induced by the condensation of the topological defects in these new phases of matter
- Julia-Toulouse mechanism (Quevedo and Trugenberger): the condensation of topological defects in solid state media generates new hydrodynamical modes for the low-energy effective theory

- In conventional superconductors, photons acquire a mass through SSB.
 - What is the corresponding effective action in topological superconductors?
 - What is the fate of the photon in the topological confinement phase?
- Need to compute the effective electromagnetic action induced by the condensation of the topological defects in these new phases of matter
- Julia-Toulouse mechanism (Quevedo and Trugenberger): the condensation of topological defects in solid state media generates new hydrodynamical modes for the low-energy effective theory
- These new modes are the long wavelength fluctuations of the continuous distribution of topological defects center 2011 - p. 17/27

The Julia-Toulouse prescription is sufficient to fully determine the low-energy action due to the condensation of topological defects in generic compact antisymmetric field theories

- The Julia-Toulouse prescription is sufficient to fully determine the low-energy action due to the condensation of topological defects in generic compact antisymmetric field theories
- In what follows we choose $\lambda = \eta = 1$

- The Julia-Toulouse prescription is sufficient to fully determine the low-energy action due to the condensation of topological defects in generic compact antisymmetric field theories
- In what follows we choose $\lambda = \eta = 1$
- In order to derive the effective action for the electromagnetic field in topological matter we couple the charge and flux modes to the external e.m. field:

$$S \to S + \int d^4x \; ieA_{\mu}j_{\mu} + i\phi F_{\mu\nu}\phi_{\mu\nu} =$$

 $= \int d^4x \; i e F_{\mu\nu} \omega_{\mu\nu} + i \phi F_{\mu\nu} \phi_{\mu\nu} \quad \text{with } 2\partial_{\nu} \omega_{\mu\nu} = j_{\mu}$

- The Julia-Toulouse prescription is sufficient to fully determine the low-energy action due to the condensation of topological defects in generic compact antisymmetric field theories
- In what follows we choose $\lambda = \eta = 1$
- In order to derive the effective action for the electromagnetic field in topological matter we couple the charge and flux modes to the external e.m. field:

$$S \to S + \int d^4x \; ieA_{\mu}j_{\mu} + i\phi F_{\mu\nu}\phi_{\mu\nu} =$$

 $= \int d^4x \; i e F_{\mu\nu} \omega_{\mu\nu} + i \phi F_{\mu\nu} \phi_{\mu\nu} \quad \text{with } 2\partial_{\nu} \omega_{\mu\nu} = j_{\mu\nu}$

The last term produces the Axion electrodynamics

Electric condensation phase

Magnetic vortices are diluted; the form that describes electric topological defects get promoted to a continuous two-form antisymmetric field $B_{\mu\nu}$
Electric condensation phase

- Magnetic vortices are diluted; the form that describes electric topological defects get promoted to a continuous two-form antisymmetric field $B_{\mu\nu}$
- The kinetic term for these new degree of freedom is given to lowest order by the square of the three-form field strength $H_{\mu\nu\alpha} = \partial_{\mu}B_{\nu\alpha} + \partial_{\nu}B_{\alpha\mu} + \partial_{\alpha}B_{\mu\nu}$:

$$S_{\text{eff}}^{TS} = \int d^4x \; i\pi k \; B_{\mu\nu} \epsilon_{\mu\nu\alpha\beta} F_{\alpha\beta} + \frac{1}{4} F_{\mu\nu} F_{\mu\nu}$$

$$+\int d^4x \; \frac{1}{12\Lambda^2} H_{\mu\nu\alpha} H_{\mu\nu\alpha}$$

Electric condensation phase

- Magnetic vortices are diluted; the form that describes electric topological defects get promoted to a continuous two-form antisymmetric field $B_{\mu\nu}$
- The kinetic term for these new degree of freedom is given to lowest order by the square of the three-form field strength $H_{\mu\nu\alpha} = \partial_{\mu}B_{\nu\alpha} + \partial_{\nu}B_{\alpha\mu} + \partial_{\alpha}B_{\mu\nu}$:

$$S_{\text{eff}}^{TS} = \int d^4x \; i\pi k \; B_{\mu\nu} \epsilon_{\mu\nu\alpha\beta} F_{\alpha\beta} + \frac{1}{4} F_{\mu\nu} F_{\mu\nu}$$

$$+\int d^4x \; \frac{1}{12\Lambda^2} H_{\mu\nu\alpha} H_{\mu\nu\alpha}$$

Use gauge invariance to reabsorb a possible θ -term into the new two-tensor degree of freedom

Electric condensation phase

- Magnetic vortices are diluted; the form that describes electric topological defects get promoted to a continuous two-form antisymmetric field $B_{\mu\nu}$
- The kinetic term for these new degree of freedom is given to lowest order by the square of the three-form field strength $H_{\mu\nu\alpha} = \partial_{\mu}B_{\nu\alpha} + \partial_{\nu}B_{\alpha\mu} + \partial_{\alpha}B_{\mu\nu}$:

$$S_{\text{eff}}^{TS} = \int d^4x \; i\pi k \; B_{\mu\nu} \epsilon_{\mu\nu\alpha\beta} F_{\alpha\beta} + \frac{1}{4} F_{\mu\nu} F_{\mu\nu}$$

$$+\int d^4x \; \frac{1}{12\Lambda^2} H_{\mu\nu\alpha} H_{\mu\nu\alpha}$$

Use gauge invariance to reabsorb a possible θ -term into the new two-tensor degree of freedom

• Λ is a new mass scale describing, essentially, the average density of the condensed charges

- Λ is a new mass scale describing, essentially, the average density of the condensed charges
- This action describes a topologically massive photon with quantized mass $m = 4\pi k \Lambda$

- Λ is a new mass scale describing, essentially, the average density of the condensed charges
- This action describes a topologically massive photon with quantized mass $m = 4\pi k \Lambda$
- The antisymmetric Kalb-Ramond field embodies a single scalar degree of freedom that is "eaten" by the original photon, no SSB.

- Λ is a new mass scale describing, essentially, the average density of the condensed charges
- This action describes a topologically massive photon with quantized mass $m = 4\pi k \Lambda$
- The antisymmetric Kalb-Ramond field embodies a single scalar degree of freedom that is "eaten" by the original photon, no SSB.
- Mass arises as a consequence of quantum mechanical condensation of topological excitations: mechanism of topological superconductivity (Allen, Bowick, Lahiri)

Electric topological excitations are dilute, the form that describes magnetic topological defects get promoted to a continuous two-form antisymmetric field $B_{\mu\nu}$

$$S_{\text{eff}}^{TC} = \int d^4x \; \frac{i\theta}{32\pi^2} B_{\mu\nu}\epsilon_{\mu\nu\alpha\beta}F_{\alpha\beta} + \frac{1}{4}B_{\mu\nu}B_{\mu\nu} + \frac{1}{12\Lambda^2}H_{\mu\nu\alpha}H_{\mu\nu\alpha}$$

Electric topological excitations are dilute, the form that describes magnetic topological defects get promoted to a continuous two-form antisymmetric field $B_{\mu\nu}$

$$S_{\text{eff}}^{TC} = \int d^4x \; \frac{i\theta}{32\pi^2} B_{\mu\nu}\epsilon_{\mu\nu\alpha\beta}F_{\alpha\beta} + \frac{1}{4}B_{\mu\nu}B_{\mu\nu} + \frac{1}{12\Lambda^2}H_{\mu\nu\alpha}H_{\mu\nu\alpha}$$

• $F_{\mu\nu}$ have been reabsorbed into the new field $B_{\mu\nu}$ by a gauge transformation: $B_{\mu\nu} \rightarrow B_{\mu\nu} + F_{\mu\nu}$

Electric topological excitations are dilute, the form that describes magnetic topological defects get promoted to a continuous two-form antisymmetric field $B_{\mu\nu}$

$$S_{\text{eff}}^{TC} = \int d^4x \; \frac{i\theta}{32\pi^2} B_{\mu\nu}\epsilon_{\mu\nu\alpha\beta}F_{\alpha\beta} + \frac{1}{4}B_{\mu\nu}B_{\mu\nu} + \frac{1}{12\Lambda^2}H_{\mu\nu\alpha}H_{\mu\nu\alpha}$$

- $F_{\mu\nu}$ have been reabsorbed into the new field $B_{\mu\nu}$ by a gauge transformation: $B_{\mu\nu} \rightarrow B_{\mu\nu} + F_{\mu\nu}$
- The new degrees of freedom arising from the condensation of topological defects that "eat" the original photon to become a massive $(m = \Lambda)$ two-form Kalb-Ramond field: this is the Stückelberg mechanism which is dual to the Higgs mechanism, no SSB

Electric topological excitations are dilute, the form that describes magnetic topological defects get promoted to a continuous two-form antisymmetric field $B_{\mu\nu}$

$$S_{\text{eff}}^{TC} = \int d^4x \; \frac{i\theta}{32\pi^2} B_{\mu\nu}\epsilon_{\mu\nu\alpha\beta}F_{\alpha\beta} + \frac{1}{4}B_{\mu\nu}B_{\mu\nu} + \frac{1}{12\Lambda^2}H_{\mu\nu\alpha}H_{\mu\nu\alpha}$$

- $F_{\mu\nu}$ have been reabsorbed into the new field $B_{\mu\nu}$ by a gauge transformation: $B_{\mu\nu} \rightarrow B_{\mu\nu} + F_{\mu\nu}$
- The new degrees of freedom arising from the condensation of topological defects that "eat" the original photon to become a massive $(m = \Lambda)$ two-form Kalb-Ramond field: this is the Stückelberg mechanism which is dual to the Higgs mechanism, no SSB
- If $\theta = 0$ no BF term is present in S_{eff}^{TC}

• Wilson loop order parameter with the effective action S_{eff}^{TC} : $W(C) = < \exp i \int_C dx^{\mu} A_{\mu} >$

- Wilson loop order parameter with the effective action S_{eff}^{TC} : $W(C) = < \exp i \int_C dx^{\mu} A_{\mu} >$
- The Stückelberg mechanism implies that the massive Kalb-Ramond field couples to an $\omega_{\mu\nu}$ such that $2\partial_{\nu}\omega_{\mu\nu} = j_{\mu}$, original charged matter current:

$$W(C) = <\exp i \int_C dx^{\mu} A_{\mu} > \to W(S) =$$

$$= < \exp i \int_{S} dx^{\mu} \wedge dx^{\nu} B_{\mu\nu} >$$

- Wilson loop order parameter with the effective action S_{eff}^{TC} : $W(C) = < \exp i \int_C dx^{\mu} A_{\mu} >$
- The Stückelberg mechanism implies that the massive Kalb-Ramond field couples to an $\omega_{\mu\nu}$ such that $2\partial_{\nu}\omega_{\mu\nu} = j_{\mu}$, original charged matter current:

$$W(C) = <\exp i \int_C dx^{\mu} A_{\mu} > \to W(S) =$$

$$= < \exp i \int_{S} dx^{\mu} \wedge dx^{\nu} B_{\mu\nu} >$$

Wilson loop become a Wilson surface order parameter

 $W(C) = \exp\left(-TA(S)\right)$

 $W(C) = \exp\left(-TA(S)\right)$

• A(S) is the area of the surface S and the string tension T is determined by the new mass scale as $T \propto \Lambda^2$

 $W(C) = \exp\left(-TA(S)\right)$

- A(S) is the area of the surface S and the string tension T is determined by the new mass scale as $T \propto \Lambda^2$
- Area-law for the Wilson loop order parameter ⇒ linear potential between charges, which is tantamount to confinement

 $W(C) = \exp\left(-TA(S)\right)$

- A(S) is the area of the surface S and the string tension T is determined by the new mass scale as $T \propto \Lambda^2$
- Area-law for the Wilson loop order parameter ⇒ linear potential between charges, which is tantamount to confinement
- Topological matter with a compact BF term can realize U(1) confinement via the Stückelberg mechanism.

 $\theta \neq 0$: oblique confinement phases in which the condensed magnetic vortices also carry electric field

- $\theta \neq 0$: oblique confinement phases in which the condensed magnetic vortices also carry electric field
- Daughters of strong topological insulators: the BF term is present in the effective electromagnetic action S_{eff}^{TC} , which is the descendant of the original θ -term of the parent strong topological insulator

- $\theta \neq 0$: oblique confinement phases in which the condensed magnetic vortices also carry electric field
- Daughters of strong topological insulators: the BF term is present in the effective electromagnetic action S_{eff}^{TC} , which is the descendant of the original θ -term of the parent strong topological insulator
- It arises from a direct coupling of the vortex current $\phi_{\mu\nu}$ to the new gauge tensor field $B_{\mu\nu}$ due to the Stückelberg mechanism

- $\theta \neq 0$: oblique confinement phases in which the condensed magnetic vortices also carry electric field
- Daughters of strong topological insulators: the BF term is present in the effective electromagnetic action S_{eff}^{TC} , which is the descendant of the original θ -term of the parent strong topological insulator
- It arises from a direct coupling of the vortex current $\phi_{\mu\nu}$ to the new gauge tensor field $B_{\mu\nu}$ due to the Stückelberg mechanism
- The BF term represents a vortex quantum Hall effect for dyonic strings (2D vortex QHE first studied by Horovitz)

- $\theta \neq 0$: oblique confinement phases in which the condensed magnetic vortices also carry electric field
- Daughters of strong topological insulators: the BF term is present in the effective electromagnetic action S_{eff}^{TC} , which is the descendant of the original θ -term of the parent strong topological insulator
- It arises from a direct coupling of the vortex current $\phi_{\mu\nu}$ to the new gauge tensor field $B_{\mu\nu}$ due to the Stückelberg mechanism
- The BF term represents a vortex quantum Hall effect for dyonic strings (2D vortex QHE first studied by Horovitz)
- The two dual forms $\phi_{\mu\nu}$ and $\omega_{\mu\nu}$ become selfdual

- Induced magnetic and electric flux currents:
 - External electric field induces a magnetic vortex current perpendicular to both the applied electric field and the direction of the magnetic flux

$$\phi_{ij}^{\text{Hall}} = \frac{\theta}{16\pi^2} \epsilon_{ijk} E_k$$

 External magnetic field induces an electric flux tube current perpendicular to both the applied magnetic field and the direction of the electric flux

$$\omega_{ij}^{\text{Hall}} = \frac{\theta}{16\pi^2} \epsilon_{ijk} B_k$$

- Induced magnetic and electric flux currents:
 - External electric field induces a magnetic vortex current perpendicular to both the applied electric field and the direction of the magnetic flux

$$\phi_{ij}^{\text{Hall}} = \frac{\theta}{16\pi^2} \epsilon_{ijk} E_k$$

 External magnetic field induces an electric flux tube current perpendicular to both the applied magnetic field and the direction of the electric flux

$$\omega_{ij}^{\text{Hall}} = \frac{\theta}{16\pi^2} \epsilon_{ijk} B_k$$

• The vortex Hall conductivity is quantized: $\sigma_H = n/16\pi$, $n \in \mathbb{Z}$

- Induced magnetic and electric flux currents:
 - External electric field induces a magnetic vortex current perpendicular to both the applied electric field and the direction of the magnetic flux

$$\phi_{ij}^{\text{Hall}} = \frac{\theta}{16\pi^2} \epsilon_{ijk} E_k$$

 External magnetic field induces an electric flux tube current perpendicular to both the applied magnetic field and the direction of the electric flux

$$\omega_{ij}^{\text{Hall}} = \frac{\theta}{16\pi^2} \epsilon_{ijk} B_k$$

• The vortex Hall conductivity is quantized: $\sigma_H = n/16\pi$, $n \in \mathbb{Z}$

Topological matter is characterized by the presence of a topological BF term in its long-distance effective action

- Topological matter is characterized by the presence of a topological BF term in its long-distance effective action
- 3D: there is another marginal term that must be added to the action in order to fully determine the physical content of the model, the Maxwell term

- Topological matter is characterized by the presence of a topological BF term in its long-distance effective action
- 3D: there is another marginal term that must be added to the action in order to fully determine the physical content of the model, the Maxwell term
- The quantum phase structure is governed by three parameters that drive the condensation of topological defects: the BF coupling, the electric permittivity and the magnetic permeability of the material

- Topological matter is characterized by the presence of a topological BF term in its long-distance effective action
- 3D: there is another marginal term that must be added to the action in order to fully determine the physical content of the model, the Maxwell term
- The quantum phase structure is governed by three parameters that drive the condensation of topological defects: the BF coupling, the electric permittivity and the magnetic permeability of the material
- 3 possible phases: topological superconductor, topological insulator and charge confinement

No SSB, photon acquires a topological mass through the BF mechanism or it becomes a massive antisymmetric tensor via the Stückelberg mechanism

- No SSB, photon acquires a topological mass through the BF mechanism or it becomes a massive antisymmetric tensor via the Stückelberg mechanism
- Synthetic topological matter may be fabricated as 3D arrays of Josephson junctions (Sodano, Trugenberger, MCD)

- No SSB, photon acquires a topological mass through the BF mechanism or it becomes a massive antisymmetric tensor via the Stückelberg mechanism
- Synthetic topological matter may be fabricated as 3D arrays of Josephson junctions (Sodano, Trugenberger, MCD)
- Vortex Quantum Hall Effect

- No SSB, photon acquires a topological mass through the BF mechanism or it becomes a massive antisymmetric tensor via the Stückelberg mechanism
- Synthetic topological matter may be fabricated as 3D arrays of Josephson junctions (Sodano, Trugenberger, MCD)
- Vortex Quantum Hall Effect
- Vortex quantum Hall effect might find an application for the dissipationless transport of information stored on dyonic vortices in oblique confinement phases