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Topological States of Matter

Quantum degrees of freedom organize themselves into
robust emergent macroscopic states.

Topological order: new quantum order not based on
SSB (Wen):

gapped in the bulk;
gapless edge excitations.

Low energy effective field theories for such states
involve topological field theories

background independent;
ground state degeneracy;
quasiparticles have fractional statistics.
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Examples

2D Chern-Simons action describes incompressible
quantum Hall fluids and their edge excitations

PT breaking

Recently new topological phases of matter with
time-reversal symmetry have been discovered (Kane,
Mele, Fu, Moore, Balents, Zhang, König): topological
insulators

Topological insulators are materials that are insulating
in the bulk but support conducting edge excitations and
can exist also in 3D (Fu, Kane, Mele, Moore, Balents)

First experimental observation in 2008 (Hsieh et al.)
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3D: weak and strong topological insulators:
weak: can be formed by layering 2D systems; not
stable to disorder
strong: topologically non-trivial; protected metallic
surface
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3D: weak and strong topological insulators:
weak: can be formed by layering 2D systems; not
stable to disorder
strong: topologically non-trivial; protected metallic
surface

Which is the topological field theory that describes this
new phase of matter? Topological BF action

BF action was first proposed as a field theory
description of topological phases of condensed matter
systems in 1996 (Sodano, Trugenberger, MCD; recently
reintroduced by Moore and Cho):

topological superconductors;
topological insulators;
topological confinement.

Frascati, September 2011 – p. 5/27



Wen’s idea

Topological ground state

Frascati, September 2011 – p. 6/27



Wen’s idea

Topological ground state

Excitations are described by conserved matter currents
the can be written as the curl of a U(1) gauge field: 2D
jµ ∝ ǫµνα∂νbα = charge matter current

Frascati, September 2011 – p. 6/27



Wen’s idea

Topological ground state

Excitations are described by conserved matter currents
the can be written as the curl of a U(1) gauge field: 2D
jµ ∝ ǫµνα∂νbα = charge matter current

Topological field theory at low energy:
S = k

4π

∫

d3x bµǫµνα∂νbα, Chern-Simons action, PT
breaking

Frascati, September 2011 – p. 6/27



Wen’s idea

Topological ground state

Excitations are described by conserved matter currents
the can be written as the curl of a U(1) gauge field: 2D
jµ ∝ ǫµνα∂νbα = charge matter current

Topological field theory at low energy:
S = k

4π

∫

d3x bµǫµνα∂νbα, Chern-Simons action, PT
breaking

But S = k
2π

∫

d3x aµǫµνα∂νbα PT invariant if aµ is a
vector; mixed or doubled Chern-Simons, U(1) × U(1)
gauge symmetry (Sodano, Trugenberger, MCD;
Freedman et al; Wen)

Frascati, September 2011 – p. 6/27



Wen’s idea

Topological ground state

Excitations are described by conserved matter currents
the can be written as the curl of a U(1) gauge field: 2D
jµ ∝ ǫµνα∂νbα = charge matter current

Topological field theory at low energy:
S = k

4π

∫

d3x bµǫµνα∂νbα, Chern-Simons action, PT
breaking

But S = k
2π

∫

d3x aµǫµνα∂νbα PT invariant if aµ is a
vector; mixed or doubled Chern-Simons, U(1) × U(1)
gauge symmetry (Sodano, Trugenberger, MCD;
Freedman et al; Wen)

Model for Josephson Junction arrays (Sodano,
Trugenberger, MCD); φµ ∝ ǫµνα∂νaα = vortex matter
current
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3D

Natural generalization:

jµ ∝ ǫµναβ∂νbαβ , charge fluctuations

φµν ∝ ǫµναβ∂αaβ ,magnetic fluctuations
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3D

Natural generalization:

jµ ∝ ǫµναβ∂νbαβ , charge fluctuations

φµν ∝ ǫµναβ∂αaβ ,magnetic fluctuations

Low energy topological field theory:

S =
k

2π

∫

d4x bµνǫµναβ∂αaβ ,BF action

In 2D reduces to the mixed Chern-Simons term

In D+1 S = k
2π

∫

MD+1
ap ∧ dbD−p

In application to condensed matter we are interested in
the case in which p = 1 ⇒ a1 and bD−1
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BF Theory in ( D+1)-dimensions

STM =

∫

MD+1

k

2π
a1 ∧ dbD−1 + (SBF )

−1

2e2
da1 ∧ ∗da1 +

(−1)D−1

2g2
dbD−1 ∧ ∗dbD−1

where k is a dimensionless parameter.

[e2] = m−D+3 [g2] = mD−1
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STM =

∫

MD+1

k

2π
a1 ∧ dbD−1 + (SBF )

−1

2e2
da1 ∧ ∗da1 +

(−1)D−1

2g2
dbD−1 ∧ ∗dbD−1

where k is a dimensionless parameter.

[e2] = m−D+3 [g2] = mD−1

3+1
φ2 = ∗da1 = vortex fluctuations, a1 is a vector;
j1 = ∗db2 = charge fluctuations, b2 is a pseudotensor;

STM is PT invariant
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Szabo): k = k1/k2 =⇒ |k1k2I|
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and Np is the rank of the matrix (e.g. D = 2, Np = 2g, g=
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Topological mass m = keg
2π , it plays the role of the gap

characterizing topological states of matter

Ground state degeneracy (Bergeron, Semenoff,
Szabo): k = k1/k2 =⇒ |k1k2I|

Np , I = determinant of the
intersection matrix between p-cycles and (D-p)-cycles
and Np is the rank of the matrix (e.g. D = 2, Np = 2g, g=
genus, Np = 2 for the torus)

BF theory provides a generalization of fractional
statistics to arbitrary dimensions (Semenoff, Szabo),
given by the adiabatic transport of hypersurface Σp

around a ΣD−p hypersurface

statistical parameter 2π
k (−1)p(D−p)

Supports edges excitations (Momen, Balachandran;
Cho and Moore ) Frascati, September 2011 – p. 9/27



Phases of BF model in (3+1) dimensions

Sodano, Trugenberger, MCD; arXiv:1104.2485;
arXiv:1105.5375

U(1) × U(1) gauge symmetry: compact
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Phases of BF model in (3+1) dimensions

Sodano, Trugenberger, MCD; arXiv:1104.2485;
arXiv:1105.5375

U(1) × U(1) gauge symmetry: compact

Need of an UV regularization

Presence of topological defects:
electric topological defects are string-like objects
described by a singular 1-form Q1 and coupled to a1;
magnetic topological defects are closed surfaces
described by a singular 2-form M2 and coupled to b2

They describe localized charges and vortices that have
structure on the scale of the UV cutoff

The phase structure is determined by the condensation
(lack of) of topological defects

Frascati, September 2011 – p. 10/27
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∫

d4x

(

1

2e2λ
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2 +

1

2e2η
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2

)

e and b are the effective electric and magnetic fields
constructed from the gauge field aµ

add an UV regulator for Gaussian integral:
∫

d4x
[
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]
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fµ ≡ 1
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What are λ and η? Coupling to an external e.m. field Aµ

: iejµAµ

Gaussian integration over aµ and bαβ induces a
quadratic term for Aµ, at long distances (≫ 1
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This term is IR irrelevant, describes massive modes
that live on scale ≪ 1

m = π
keg

√

λη

What are λ and η? Coupling to an external e.m. field Aµ

: iejµAµ

Gaussian integration over aµ and bαβ induces a
quadratic term for Aµ, at long distances (≫ 1

m):

S(A) =

∫

d4x
1

2

[

1

λ
E

2 +
1

η
B

2

]

The model describes a topological insulator (Moore)

ǫ = 1
λ electric permittivity; µ = η magnetic permeability
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quantization condition keφ

2π = integer
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Axion Electrodynamics

Add a T-breaking term: iφφµνFµν , Fµν = ∂µAν − ∂νAµ

Integration over matter fields gives:

S → S =

∫

d4x
iθ

16π2
FµνF̃

µν =

∫

d4x
iθ

4π2
E · B , θ =

keφ

2

T-invariance of the partition function ⇒ Dirac
quantization condition keφ

2π = integer

This term is present in strong topological insulators

It describes magnetoelectric polarizability

Frascati, September 2011 – p. 13/27



Phase structure analysis

Lattice regularization: hypercubic lattice in four
Euclidean dimensions with lattice spacings l
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Phase structure analysis

Lattice regularization: hypercubic lattice in four
Euclidean dimensions with lattice spacings l

Compactness imply that gauge variables become
angular variables: periodicity

To implement periodicity one has to introduce two
integer forms Q1 and M2 in the Euclidean partition
function

S → S +

∫

M3+1

a1 ∧ ∗Q1 + b2 ∧ ∗M2

Q1 = closed electric loops;
M2 = closed magnetic surfaces.
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Analysis based on:
free energy arguments, however an analytic
expression is not known for the entropy of random
surfaces ⇒ qualitative argument;
expectation value of Wilson loop, LW , for an electric
charge q and ’t Hooft surface, SH , for a vortex line
with flux φ.
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Analysis based on:
free energy arguments, however an analytic
expression is not known for the entropy of random
surfaces ⇒ qualitative argument;
expectation value of Wilson loop, LW , for an electric
charge q and ’t Hooft surface, SH , for a vortex line
with flux φ.

e and α = ml ≥ O(1) are fixed parameters, vary the
dimensionless parameters k, λ(1/ǫ) and η(µ):

k2λ ≪ α2/e2 and η ≪ π2/e2 electric condensation
phase;
k2λ ≫ α2/e2 and η ≫ π2/e2 magnetic condensation
phase;
in between both types of topological excitations are
dilute: topological insulating phase. Frascati, September 2011 – p. 15/27



Express LW and SH in term of external gauge
potentials Aµ and Bµν and compute the induced charge
and vortex current:

jind
µ ∝ Aµ: London equation for induced charges

current, perfect conductivity and photon mass in the
charge condensation phase;

φind
µν ∝ Bµν : perfect vortex conductivity, electric

screening and a photon mass in the magnetic
condensation phase

Frascati, September 2011 – p. 16/27



Express LW and SH in term of external gauge
potentials Aµ and Bµν and compute the induced charge
and vortex current:

jind
µ ∝ Aµ: London equation for induced charges

current, perfect conductivity and photon mass in the
charge condensation phase;

φind
µν ∝ Bµν : perfect vortex conductivity, electric

screening and a photon mass in the magnetic
condensation phase

T = 0 quantum phase structure:

ǫ ≫ k2e2

α2 , µ ≪ π2

e2 → top. superconductor

intermediate regime → top. insulator

ǫ ≪ k2e2

α2 , µ ≫ π2

e2 → top. confinement
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In conventional superconductors, photons acquire a
mass through SSB.

What is the corresponding effective action in
topological superconductors?
What is the fate of the photon in the topological
confinement phase?
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In conventional superconductors, photons acquire a
mass through SSB.

What is the corresponding effective action in
topological superconductors?
What is the fate of the photon in the topological
confinement phase?

Need to compute the effective electromagnetic action
induced by the condensation of the topological defects
in these new phases of matter

Julia-Toulouse mechanism (Quevedo and
Trugenberger): the condensation of topological defects
in solid state media generates new hydrodynamical
modes for the low-energy effective theory

These new modes are the long wavelength fluctuations
of the continuous distribution of topological defectsFrascati, September 2011 – p. 17/27



The Julia-Toulouse prescription is sufficient to fully
determine the low-energy action due to the
condensation of topological defects in generic compact
antisymmetric field theories
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In what follows we choose λ = η = 1

In order to derive the effective action for the
electromagnetic field in topological matter we couple
the charge and flux modes to the external e.m. field:

S → S +

∫

d4x ieAµjµ + iφFµνφµν =

=

∫

d4x ieFµνωµν + iφFµνφµν with 2∂νωµν = jµ

The last term produces the Axion electrodynamics
Frascati, September 2011 – p. 18/27
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Λ is a new mass scale describing, essentially, the
average density of the condensed charges

This action describes a topologically massive photon
with quantized mass m = 4πkΛ

The antisymmetric Kalb-Ramond field embodies a
single scalar degree of freedom that is "eaten" by the
original photon, no SSB.

Mass arises as a consequence of quantum mechanical
condensation of topological excitations: mechanism of
topological superconductivity (Allen, Bowick, Lahiri)

Frascati, September 2011 – p. 20/27



Magnetic condensation phase

Electric topological excitations are dilute, the form that
describes magnetic topological defects get promoted to
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describes magnetic topological defects get promoted to
a continuous two-form antisymmetric field Bµν
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eff =
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d4x
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4
BµνBµν +

1
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HµναHµνα

Fµν have been reabsorbed into the new field Bµν by a
gauge transformation: Bµν → Bµν + Fµν

The new degrees of freedom arising from the
condensation of topological defects that "eat" the
original photon to become a massive (m = Λ) two-form
Kalb-Ramond field: this is the Stückelberg mechanism
which is dual to the Higgs mechanism, no SSB

If θ = 0 no BF term is present in STC
eff
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Wilson loop order parameter with the effective action
STC

eff : W (C) =< exp i
∫
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∫
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dxµAµ >

The Stückelberg mechanism implies that the massive
Kalb-Ramond field couples to an ωµν such that
2∂νωµν = jµ, original charged matter current:

W (C) =< exp i

∫

C

dxµAµ >→ W (S) =

=< exp i

∫

S

dxµ ∧ dxνBµν >

Wilson loop become a Wilson surface order parameter
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The mass term for the Kalb-Ramond fields gives:

W (C) = exp (−TA(S))
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Area-law for the Wilson loop order parameter ⇒ linear
potential between charges, which is tantamount to
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The mass term for the Kalb-Ramond fields gives:

W (C) = exp (−TA(S))

A(S) is the area of the surface S and the string tension
T is determined by the new mass scale as T ∝ Λ2

Area-law for the Wilson loop order parameter ⇒ linear
potential between charges, which is tantamount to
confinement

Topological matter with a compact BF term can realize
U(1) confinement via the Stückelberg mechanism.
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Dyonic vortex condensate

θ 6= 0: oblique confinement phases in which the
condensed magnetic vortices also carry electric field
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Dyonic vortex condensate

θ 6= 0: oblique confinement phases in which the
condensed magnetic vortices also carry electric field

Daughters of strong topological insulators: the BF term
is present in the effective electromagnetic action STC

eff ,
which is the descendant of the original θ-term of the
parent strong topological insulator

It arises from a direct coupling of the vortex current φµν

to the new gauge tensor field Bµν due to the
Stückelberg mechanism

The BF term represents a vortex quantum Hall effect for
dyonic strings (2D vortex QHE first studied by Horovitz)

The two dual forms φµν and ωµν become selfdual
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Induced magnetic and electric flux currents:
External electric field induces a magnetic vortex
current perpendicular to both the applied electric
field and the direction of the magnetic flux

φHall
ij =

θ

16π2
ǫijkEk

External magnetic field induces an electric flux tube
current perpendicular to both the applied magnetic
field and the direction of the electric flux

ωHall
ij =

θ

16π2
ǫijkBk
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Topological matter is characterized by the presence of a
topological BF term in its long-distance effective action
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Conclusions

Topological matter is characterized by the presence of a
topological BF term in its long-distance effective action

3D: there is another marginal term that must be added
to the action in order to fully determine the physical
content of the model, the Maxwell term

The quantum phase structure is governed by three
parameters that drive the condensation of topological
defects: the BF coupling, the electric permittivity and
the magnetic permeability of the material

3 possible phases: topological superconductor,
topological insulator and charge confinement
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No SSB, photon acquires a topological mass through
the BF mechanism or it becomes a massive
antisymmetric tensor via the Stückelberg mechanism
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No SSB, photon acquires a topological mass through
the BF mechanism or it becomes a massive
antisymmetric tensor via the Stückelberg mechanism

Synthetic topological matter may be fabricated as 3D
arrays of Josephson junctions (Sodano, Trugenberger,
MCD)

Vortex Quantum Hall Effect

Vortex quantum Hall effect might find an application for
the dissipationless transport of information stored on
dyonic vortices in oblique confinement phases
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