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Criticality	

Up to the sixties of the last century the entire world of condensed 
matter or every N-body system in a stable phase was considered to be 
reducible to a collection of quasi-particles.	


Puzzling behavior arises in the proximity of criticality (the first 
example of what is now called “complexity”) where the collective 
phenomena do not arise as a simple superposition of single 
microscopic events and the laws of great numbers are modified 
(violation of  1/N1/2  law). It is no more true that each sufficiently 
large portion has an average behavior independent from the rest. 	

The statistical aspects and new universal simplifying aspects are now 
dominating with respect to the previous approaches (many body 
theory) of approximately solving the dynamics to reduce each system 
to a gas of quasi-particles.	




The most successful use of Renormalization Group, both in the 
field theoretic (1969) and the Wilson (1971) approaches, is of 
course in critical phenomena with the summation of infrared 
singular perturbation terms to give, for d<4, the critical power law 
behavior of physical response functions.	

However perturbation theory can be singular even in stable phases 
with , e.g.:	

Interacting Fermions at d=1. 	

Interacting Bosons with condensation for for d≤3. (Pistolesi et al Phys. 
Rev. B 69, 024513 (2004) and references therein) 	

Both cases deal with stable liquid phases. 	


Stability therefore requires of singularities at all 
orders in perturbation theory in the response functions:	


       	




I only recall  the interacting Fermi system at d=1, just to introduce 
to the non Fermi liquid problem relevant for the Cuprates. 	

Luttinger model was considered with linear spectrum (εk=vF(k-kF)) 
and forward scattering (g2, g4)	

_.______._            _.______._                 	

 -kF       +kF         	


≈lnk    d=1,       d+1-2=0 infrared ln singularity  	


susceptibility, specific heat, compressibility finite: 	

exact cancellation of singularities implemented by additional charge (spin)	

conservation at each Fermi point separately in addition to the total charge 	

(spin) conservation and related Ward Identities	
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Λ = vFvers p Λ0

The first WI implements the total charge conservation and relates the 	

current-vertex Λ and the charge-vertex Λ0 to the one particle Green	

function. The last WI (separate left and right charge conservation)	

allows to eliminate Λ to give                       	

This closes the Dyson equation for G  	
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The quasi-particle weight vanishes at the Fermi surface	

with an anomalous dimension η : 	

Non Fermi Liquid (FL),   Charge and spin modes are separated	

Single particle moves as a composite object due to the strong mixing	

with charge and spin modes via the RPA marginal effective interaction 	

D(q,ω).                       For a review see W.Metzner, C.Castellani and C.D C	

                                           Adv. in Phys. 47, 317-445 (1997).	


2d metals? Can the same mechanism leading to Luttinger 	

liquid in 1d lead to a non-FL in 2d as for the Cu-O planes of Cuprates?	

Answer: No, with short range interaction.	

In d dimension the generic integrals in k are proportional to 	

(sinθ)d-2 and for 1≤d<2  are peaked for θ=0, π	

Almost all relevant k vectors are parallel or anti-parallel	

Tomographic Luttinger model for which the additional WI,	

valid in 1d, still holds asymptotically near the Fermi Surface	


However  D(q,ω) is now averaged over the over the transverse	

 momenta and, being marginal in 1d, scales to zero in d>1.	
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We obtain therefore a normal Fermi Liquid (FL) as soon as d>1	

unless a singular potential compensate this reduction of 	

mixing with collective modes. This is the case when the interaction is 	

mediated by critical modes near an instability.	

This is one of the reasons which lead us to look for a quantum	

critical point (QCP) in the Cuprates separating two states underlying	

superconductivity. 	


In classical critical phenomena a knowledge of the fundamental 	

symmetry inherent to each specific problem (in particular of the order 	

parameter) is required to make the proper choice of the basic variables	

 entering the Landau-Wilson functional on which the RGT acts. 	


In quantum criticality (QC) (Hertz 1976, Millis 1993,…) at T=0 not only 	

the symmetry of the local order parameter enters. The dynamics is 	

inextricably mixed in the generalized Landau-Wilson functional of 	

the coarse grained fluctuating field of the order parameter.	

QC behavior usually extends in a wide T-region above QCP	




Long time correlation fluctuations are generated with divergent 
relaxation time  τo ≈ ξz;  the dynamical index z determines how the 
frequency relates to the wave vector k in the dynamical Landau-Wilson 
functional. z specifies if the modes of the order parameter are 
propagating (z=1) or damped and diffusive, z=2 (AFM).	


Unraveling the dynamics of specific QC and competitions eventually 
leading to unconventional criticality is one hot branch of research and 
the starting point for future more sophisticated field theory approaches.	

In particular in Cuprates disentangling the relevant modes (of the 
underlying state on which high temperature superconductivity (HTS) 
establishes) acting also as a glue for pairing, is a relevant current issue. 
It is also a starting point to unravel which phase is competing with 
superconductivity.	




Examples of “hidden” QCP  and schematic phase diagrams	
 Ca(Fe1-xCox)2As2	


 Chuang et al 2010	
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SDW fluctuations act as glue for d-wave SC	

Electrons reorganize: new state to avoid QCP. 	


High Temperature Superconductors: the SC 	

dome seems to hide a QCP due to competition 	

between two different ground states.	

What is the competing order and the related 	

critical modes, mediators of pairing? 	
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Generic phase diagram of Cuprates, e.g. La2-xSrxCuO4	


Opt.Dop. Universal Non-FL  
no energy scales but T 

Changes in transport and 
thermodynamics Overdoped: FL 

Und. Dop. Strong Non-FL below T* 
Pseudo Gap for charge and spin in 
some regions of the Fermi surface  
Variety of spin and charge ordered 
structures:stripe-like (dynamical  
with smectic order) (LSCO, YBCO), 
checkerboard or droplets (Bi2212)  

Competing order?  Inhomogeneous 
 states in UD with a hidden QCP?  
Are the fluctuations of the hidden order  
the glue for d-wave pairing and the  
cause of the non-FL behavior? 
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Cuprates: a (hidden) QCP  around OpD ?	

Experimentally: Physics changes qualitatively around OpD [e.g.: 

i) transport  when SC is suppressed by a strong 
magnetic field H or impurities 
ii) thermodynamic quantities like heat capacity 
(e.g. Tallon and Loram 2001)] 

Theoretically: Several proposals of QCP 
-Incommens. CDW-Stripes (Castellani et al 1995), qc ≈(0,±π/2), (±π/2,0)  
-Circulating currents (Varma 1994,…), qc=0  
-Pomeranchuk instability (Metzner 2003), (nematicity) qc=0  
-spin waves (Chubukov, Pines,…), qc ≈(π,π)  
-d-Density Wave (modulation of current) 
(Benfatto et al 2000; Chakravarty et al 2001) 
T* ≈ Torder?  

Crucial role of critical modes for retarded effective interaction? 
I will concentrate on our proposal    
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If order is not truly 	

static-long-range 	

m never vanishes	


m~ξ-2  depends on proximity to the “missed instability” 	
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Due to the onset of heterogeneity, (Tco(x)≈ T*(x)) dynamical charge and spin 	

fluctuations mediate strong T, x and q retarded interaction among quasi particles	

Specifying the glue and leading to a comprehensive scenario for the Cuprates	


T*	
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Spin and charge modes can then be unraveled.     	


Nearly critical spin and 	

charge modes strongly 	

couple same regions but 
different branches of the 	

Fermi Surface 	


In Raman spectroscopy the probed k-space is selected with specific 
form factors in the vertices, which assume different signs in the 
various parts of the FS:	


B1g	


B2g	


Can we identify these collective modes ?	
 Caprara et al 	

PRB 2011	




B1g	
 B2g	

                           indeed different shapes below ~4000 cm-1    e.g.	


Theoretically: At leading order in the critical modes (one mode 
exchanged, low energy, linearized bands, vertices evaluated at EF…), 
symmetry arguments based on the different qc’s and on the different 
sign of the form factors select charge modes for B2g and spin modes 
for B1g.	

Fitting the data at various dopings (0.15<x<0.26) and temperatures we 
obtain the glue function α2F and the spectral weights of the modes. 	


(a.u.)	


Experimentally	




Consistent with an underlying QC behaviour for charge ordering: 
ξc

-2 → 0 as T→ 0 at x=0.20, at x>0.20 saturates, at x<0.20 goes  
to zero at a finite T*.  QCP is usually reported at x=0.19. 
I will now examine the low doping region. 

€ 

T-Dependence of charge and spin square inverse correlation length	


spin (dotted lines) and charge (full lines) spectral 	

weight Ws and Wc as function of doping 	


Ws decreases while Wc increases with doping	

 crossing at x=0.19 according to the proposed	

 scenario	
doping	




Nematic	


Heterogeneity e.g. in underdoped 
Bi2CaCu2O8+y,   Lawler et al 2010 [STM], 
Mesaros et al 2011)  
Nematic order homogeneous 
at cell level (differences in the 
two O-sites of the cell in the  
Cu-O planes) 
Smectic order heterogeneous 
 Is nematicity a sign of fluctuating density wave  order, 
(melted smectic stripes) or vice versa has independent formation?  
At low doping where spin and charge glassiness is present, vortex- 
antivortex (V-A) segments form the seeds of nematicity and  
of incommensurate smectic structures. (G. Seibold et al in preparation, 
See also Berciu and John 2004, Timm and Bennemann 2000) 

Smectic	

From low doping	


e=1, at E= local pseudogap	




Dilute limit; Spin glass phase	


1(3)-band Hubbard model (U,t,t’) 
Gutzwiller approximation  
Two holes form Vortex-Antivortex pairs 
which tend to arrange in 1D segments. 

spin/charge	
 spin currents	

Diagonal V-A pair 

4 diagonally neighbored V-A pairs 

Dipole-dipole magnetic interaction	

between two pairs in 2D indeed favors 	

nose to tail alignment.	

Analogy with dipolar fluids where	

standard phase separation with isotropic 	

aggregation is replaced by a defect 	

induced (ends and junctions of chains) 	

topological PS (Tlusty and Safran 2000).	


For -0.3<t’/t<-0.2 crossover from diagonal	

to vertical-horizontal configuration.	

Each segment of n pairs has 2n charges 	

immersed in a compensating charged	

background    Chain’s length limited 	

to a maximum nc.=5-6 unit cells	




Spin and charge response from V-A chains with parallel configuration 	


Average over 20 random stripe	

segment configurations:	

Doping: x=0.05	

Segment length: 6±4 aortho	

Distance: 10±4 aortho 	


Spin structure factor	


Charge structure factor	


qx	

qy	


qx	

qy	


Glass of  nematic V-A chains gives	

rise to smectic correlations at least 	

in the spin sector at low doping	


100	




Diagonal (Vertical) junction: 20x20 lattice, 14 holes, U/t=8	

t’/t=-0.1	
 t’/t=-0.2	


Increasing doping and temperature branching is favored and more 	

complex structures (checkerboard, bubbles,…) should appear out of 	

spin (and charge) nematic glass. 	


junction in 	

dipolar fluid	


edge dislocation	


Both structures tend to favor closed structures. 	

New feature : gas of topological excitations, ends and junctions.	

Charge and spin interconnected up to QCP and the scenario becomes complete. 	




Summary and conclusion	


Within the framework of RG approach, I recalled the case of d=1 interacting electron system 	

plagued by infrared divergences well inside the liquid stable phase. Additional symmetries and 	

related Ward Identities implements cancellation of singularities to all orders in the response	

functions and allow for the asymptotic solution of the problem. A non Fermi liquid (Luttinger	

liquid) is obtained, which however reduces to a FL as soon as d>1, except in the presence of 	

singular effective interaction, e. g. nearby an instability. This seems to be the case of Cupates.	


As glue mediators in Cuprates, Raman spectroscopy identifies two modes, spin and charge with	

different  characteristic wave vectors . The relative importance of the two scattering mechanisms 	

switches from spin to charge by increasing doping. 	

Simultaneous presence of spin and charge-density fluctuations suggests both charge and spin 	

ordering as competing phase. 	


Confirmation of Quantum Criticality leading to inhomogeneous state formation with 	

various morphologies (stripes, droplets,…) arising as Fermi Liquid instability of charge	

modulation at high doping (Rome proposal) evolving into spin dominated structures when	

 the AFM region is approached at low doping (Emery and Kivelson proposal).	


At low doping glass of nematic V-A chain segments give rise to smectic correlations like in stripe	

phase (at least in the spin sector) and are the seeds for more compact structures (checkerboard, 	

bubbles…)	




the segments are distributed at random.	


Cuts of spin structure factor computed for x=0.03, 0.04, 0.05 in the glass 
phase.Vertical dahsed lines are the experimental incommensurabilites 
(Matsuda) .	
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Symmetry arguments for the leading contribution to Raman response	


B1g	


B2g	


The two diagrams cancel 
at leading order when the 
two vertices are equal 
they add when the two  
vertices are opposite 
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Morphologies in Cuprates   :	

“Dynamical Stripes”:  YBCO LSCO Neutron Tranquada, Mook, Abbamonte (RSXS)…	

Charge period (when observed) ½ spin (incommensurate) period.     ξ up to ≈20 periods 	

(Cu-O) oriented modulation; diagonal in LASCO x<0.05	


Or checkerboard (STM) :	

- Ca2-xNaxO2Cl2 (x=0.08, 0.10, 0.12) Conductance map 4ax4a and 4a/3x4a/3 	

modulation .  ξ small slightly increasing with x                              Hanaguri et al  2004	

-Ca1.88Na0.12O2Cl2,  Bi2Sr2Dy0.2Ca0.8Cu2O8+δ             4a-Unidirectional domains                                	

                                                                                                          Kohsaka et al 2007	

-Bi2Sr2CaCu2O8+δ: 	

 i) 4.5ax4.5a modulation Antinodal decoherence coincident with emergence of charge	

 order                                                                                                Mc Elroy et al 2005	

ii) modulation (4.7±0.2)a.  ξ≈5 periods                                            Vershinin et al 2004	


Or islands: Bi2212          Gap Δ maps from STM               Lang et al 2002	


Underdoped 
 (x=0.14) 

Slightly OD 
      (x=0.18) 

560Α 

Superconducting Like Insulating Like 

(Δ)=50meV 

L=30~40 A° 
(Δ)=35meV 

 B-drops in A-phase or 
 vice versa 

see also	

Boyer et al	

  2007	



