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RG flows on the lattice

• Studies of the RG flow in lattice gauge theories are ubiquitous

• Different techniques have been developed (EoS, SF, MCRG)

• Existence of nontrivial fixed points, determination of the critical exponents

• Flow of the couplings in different schemes 

• Applications to 3D theories of fermions (GN, Thirring, graphene)

• Applications to 4D gauge theories coupled to matter (QCD, BSM models)
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Fixed points
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In a neighbourhood of a fixed point:

δgi = gi − g
∗
i , µ

d

dµ
(δgi) = Mijδgj +O

�
δg2

�

Mij =
∂βi

∂gj

����
g∗

Choosing a basis of eigenvalues of M we find:

d

dµ
ui = −yiui +O(u2) , ui(µ) =

�
µ

µ�

�−yi

ui(µ
�)

Define the scaling dimension of the associated operator: 

∆i ≡ di + γi = D − yi

β(g∗) = 0
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Relevant couplings
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Power-law scaling in the neighbourhood of a fixed point suggests a classification of the 
couplings:

1.yi > 0: relevant couplings, diverge in the IR, need to be fine 
tuned at the cut-off scale.

2.yi < 0: irrelevant couplings, their value at the cut-off scale has 
no influence on the low-energy physics.

3.yi = 0: marginal couplings. 
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Scheme-dependence
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gi(µ) = gi (g̃(µ̃), µ̃/µ)

0 = µ̃
d

dµ̃
gi(µ) =

�

a

∂gi
∂g̃a

β̃a +
µ̃

µ

∂gi
∂(µ̃/µ)

βi =
d

dµ
gi = − µ̃

µ

∂gi
∂(µ̃/µ)

βi =
�

a

∂gi
∂g̃a

β̃a

Consider the couplings in two different schemes:

Rewrite the second term in the sum using: 

and substitute in the eq. above:

beta functions transform covariantly under a change of scheme
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Invariance of the critical exponents
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�

j

∂βi

∂gj

∂gj
∂g̃b

=
�

a

�
∂2gi

∂g̃a∂g̃b
β̃a +

∂gi
∂g̃a

∂β̃a

∂g̃b

�

Sia =
∂gi
∂g̃a

����
g̃∗

�

j

MijSjb =
�

a

SiaM̃ab

Taking one more derivative wrt g̃b

Introducing the matrix S:

and evaluating everything at the critical point, yields:

                                      and     have the same eigenvaluesM M̃

Tuesday, 6 September 2011



Recent numerical work on graphene
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• Low-energy excitations: linear dispersion relation at the corners of the BZ

• Dirac Hamiltonian for 2 flavors of 4 components massless spinors [G Semenoff, 84]

• Electron speed                   ; breaking of Lorentz symmetry

• 4-fermi interactions + Coulomb [IF Herbut, 06]

• 3-dim Coulomb interaction [DT Son, 07; J Drut & DT Son, 08]

• Alternative formulation as a deformed Thirring model [SJ Hands, 08]

• Strongly coupled theory, analytical results in the large nf limit

• Identification of a RG fixed point, separating gapless/gapped phase

• Nonperturbative studies: lattice/Schwinger-Dyson eqs

v � c/300
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Phase diagrams
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SE = −
�

d2xdt ψ̄Dψ +
ε0
2e2

�
d3xdt (∂A)2 [DT Son 07, J Drut 09]
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RG flows & scaling laws
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Order parameter: �ψ̄ψ�

Scaling of the order parameter is dictated by the linearized RGE
(in the neighbourhood of the fixed point)

Relevant parameters: m, t = 1/g2 − 1/g2c

m = �ψ̄ψ�δF
�
t�ψ̄ψ�−1/β

�

�ψ̄ψ� ∼ tβ �ψ̄ψ� ∼ m1/δ

Critical exponents are determined by the e.v. of the linearized RG flow:

β =
D − ym

yt
, δ =

ym
D − ym

Tuesday, 6 September 2011



Lattice simulations
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Lattice simulations of fermionic systems are computationally challenging:

Z =

�
Dφ e−S[φ] (detD)

=

�
DφDχDχ∗ e−S[φ]−χ∗(D†D)−1χ

Simulations are performed at finite m and finite volume
System is always driven away from the fixed point

Fixed points can be identified from the scaling laws

Input parameters: g,m needs to be determined together with the critical              
exponents

gc

Observables: �ψ̄ψ�,MH ,
∂

∂m
�ψ̄ψ�, ∂ log�ψ̄ψ�

∂ logm
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Scaling laws
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RG equations imply simple scaling rules [JB Kogut, MP Lombardo,G Schierholz, LDD 90s]

m = B�ψ̄ψ�δ +At�ψ̄ψ�(δ−1/β)

R =
m

�ψ̄ψ�
�ψ̄ψ�
m

=
1�

δ − 1
β

�
+ B�ψ̄ψ�δ

βm

lim
m→0

R =

�
0, g2 < g2c

1/
�
δ − 1

β

�
, g2 > g2c

R|g=gc
= 1/δ

Check the consistency of lattice data with the existence of a fixed point
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(old) Results for the Thirring model
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[LDD & SJ Hands 97]
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(new) Results for graphene
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Finite-size scaling
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Finite-size effects can be incorporated in the RG analysis [LDD & SJ Hands 97]

m = �ψ̄ψ�δF
�
t�ψ̄ψ�−1/β , L−1/ν�ψ̄ψ�−1/β

�

Taylor expansion of the scaling function yields for the EoS

m = B�ψ̄ψ�δ +A(t+ CL−1/ν)�ψ̄ψ�(δ−1/β)

The exponents determined from this fit are the ones in the thermodynamical limit

Recently used to analyse the nf  dependence of the order parameter at the critical coupling:

m = B�ψ̄ψ�δ +A[(nf − nc) + CL−1/νt

t ]�ψ̄ψ�(δ−1/β)

[SJ Hands et al 08]
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Finite-size scaling for graphene
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because their small errorbars destabilised the fits; since this data probably comes from
the chirally symmetric phase there may be a small systematic error in the identification
of g2

peak across the transition.
Fits to (15) favour Nfc ! 3.8−4, and p ! 0.9. These values are also favoured by the

most comprehensive FVS fit to the 96 datapoints with Nf < 5. There is no evidence that
discarding m = 0.01 data, which may be most prone to finite volume artifacts, improves
any of the fits. On the other hand, discarding Lt = 16 and perhaps Lt = 24 does have
a significant effect on the fitted values of Nfc, p and νt in the FVS fits. In these cases
the fitted δ ≈ 4. However, once data with extremal values of Nf is excluded, on the

assumption that they lie outside the scaling window, the fitted values of δ rise to >
∼ 5.

In almost all cases the fitted value of νt exceeds 1, though often not by a statistically
significant margin.
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Figure 4: Finite volume scaling fit to (17) to data with m = 0.01 (circles), 0.02 (squares), 0.03 (dia-
monds) and 0.04 (triangles), in terms of N ′

f .

Our favourite fit, yielding the smallest χ2/dof, emerges from the 60 datapoints with
Nf ∈ [3, 5) and Lt ≥ 32. Another reason for preferring this is that the fitted Nfc is
consistent with the value (14) coming from the behaviour of g2

peak(Nf ), which could be
regarded as an additional constraint on the global fit. The fit is plotted in Fig. 4 in

terms of the control parameter in the thermodynamic limit N ′

f = Nf + CL
−

1

νt
t , so that

data with differing Lt should collapse onto a single curve for each value of m.
To summarise: this “best” fit provides a reasonable description of the data in the

window 4.5 <
∼ N ′

f
<
∼ 6, in particular for the smallest mass m = 0.01; fits of the form

10

[SJ Hands 08]
S =

�
d3x

�
ψ̄(x)Dψ(x) +

g2

2nf

�
ψ̄(x)γ0ψ(x)

�2
�

nc=4.8(2)
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Comments 
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• Assess the systematic errors involved in the numerical simulations

• Fermion discretization, staggered, chiral fermions

• Square lattice vs hexagonal lattice? 

• First results on hex lattices have been presented at the Lattice 2011 conference

• Finite-size scaling

• Importance of the fixed point

• Other interactions? 
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RG flows for 4D gauge theories 
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Pure YM QCD-like IRFP
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Conformal window in SU(N) gauge theories
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Fund

2A

2S
Adj

Ladder

Catterall, Sannino

Del Debbio, Patella,Pica

Catterall, Giedt, Sannino, Schneible

Iwasaki et al.

Appelquist, Fleming, Neil

Deuzeman, Lombardo, Pallante 

!

!

γ = 1 γ = 2

Shamir, Svetitsky, DeGrand

Non-SUSY Phase Diagram Bound

Ryttov and F.S. 07All Orders Beta Function
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Schrödinger functional
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Finite-volume renormalization scheme: 
size of the system defines the renormalization scale, 
impose Dirichlet boundary conditions

Normalization to match perturbation theory.

The renormalized charge is an observable, i.e. it can be 
measured by numerical simulations. 

The definition above extends outside the perturbative 
regime and yields a nonperturbative coupling. 

The coupling depends on one scale only, the finite size 
of the system. 

g2(L) = k

�
∂S

∂η

�−1 r

[M Luscher et al 90s]
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SF - running of the coupling
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The running of the coupling as the scale is varied by a factor s is encoded in the step 
scaling function:

Σ(u, s, a/L) = g2(g0, sL/a)
��
g2(g0,L/a)=u

Lattice step scaling is affected by lattice artefacts, i.e. depends on the details of the UV 
regulator. We can define a continuous step scaling:

σ(u, s) = lim
a/L→0

Σ(u, s, a/L)

−2 log s =

� σ(u,s)

u

dx√
xβ(

√
x)

L/a: resolution of the theory
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SF - running of the coupling

21

At the fixed point:

σ(u, s) = u ⇐⇒ σ(u, s)/u = 1

In the neighbourhood of the fixed point, the running is very slow. 

Need a high statistical accuracy in order to resolve the physically interesting behaviour. 

�
σ(u, s)− g∗√

u− g∗
= s−β�

∗
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Lattice data
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SF - running of the mass
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The renormalized mass is defined as:

m̄(µ) =
ZA

ZP (µ)
m

In order to study its running we need to compute nonperturbatively:

ZP (L) =
�

3f1/fP (L/2)

f1 = −1/12L6

�
d3u d3v d3y d3z �ζ �(u)γ5τaζ �(v)ζ(y)γ5τaζ(z)� ,

fP (x0) = −1/12

�
d3y d3z �ψ(x0)γ5τ

aψ(x0)ζ(y)γ5τ
aζ(z)� .

Tuesday, 6 September 2011



SF - running of the mass
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Step scaling functions for the mass:

ΣP (u, s, a/L) =
ZP (g0, sL/a)

ZP (g0, L/a)

����
g2(L)=u

σP (u, s) = lim
a→0

ΣP (u, s, a/L)

σP (u) =

�
u

σ(u)

�(d0/(2β0))

exp

�� √
σ(u)

√
u

dx

�
γ(x)

β(x)
− d0

β0x

��

Relation to the anomalous dimension:
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SF - running of the mass
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In the neighbourhood of the fixed point:

� m(µ/s)

m(µ)

dm

m
= −γ∗

� µ/s

µ

dq

q

log |σP (s, u)| = −γ∗ log s

Hence we can define an estimator for the anomalous dimension:

γ̂(u) = − log |σP (u, s)|
log |s|

Tuesday, 6 September 2011



Lattice data
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MCRG
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Follow the flow of bare couplings under RG transformations (blocking)
Each blocking step changes the scale by a factor s.

Two methods:

1. Compute directly the matrix M that defines the linearized RG flow

2. Find the RG-transformed couplings by matching observables
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Computation of the linearized RG transformation
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Theory is defined by the action:

S =
�

i

giSi

Si =

�
dDxµD−di∂piφni

RG transformation:

S(n+1) = RsS
(n) =

�

i

g(n+1)
i S(n+1)

i

Fixed point:

S∗ = RsS
∗ =

�

i

g∗i S
∗
i
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Computation of the linearized RG transformation
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Close to the fixed point:

g(n+1)
i − g∗i =

�

j

T ∗
ij (g

(n)
j − g∗j )

and therefore:

∂�S(n)
i �

∂g(n−1)
j

=
�

k

∂g(n)k

∂g(n−1)
j

∂�S(n)
i �

∂g(n)k

=
�

k

Tkj
∂�S(n)

i �
∂g(n)k

∂�S(n)
i �

∂g(n−1)
j

= �S(n)
i S(n−1)

j � − �S(n)
i ��S(n−1)

j � ≡ A(n)
ij

∂�S(n)
i �

∂g(n)j

= �S(n)
i S(n)

j � − �S(n)
i ��S(n)

j � ≡ B(n)
ij

We can evaluate the vev in the LHS and RHS:
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Computation of the linearized RG transformation
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and finally:

⇒ T = B−1A

Blocking transformation:

ϑ(nB) = b
�

n∈nB

φ(n) +
ζ√

NaW

satisfies

e−S[ϑ] =

�
d[φ]e−S[φ]e

− aW
2

�
nB

�
ϑ(nB)−b

�
n∈nB

φ(n)
�2
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Conclusions
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•MC simulations have already been used for the study of graphene

•RG fixed points can be identified from the scaling of the order parameter (and 
susceptibilities) in the neighbourhood of the fixed point

•study of systematic errors - hexagonal lattice, different types of fermions

•other methods have been used for the study of 4D field theory

•these new methods could be used for condensed matter systems

•graphene as a testing ground?

Tuesday, 6 September 2011



Gauge theories with fermions
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β(g) = µ
d

dµ
g(µ) = −β0g

3 − β1g
5 +O(g7)

β0 =
1

(4π)2

�
11

3
Cs(A)− 4

3
TRnf

�

β1 =
1

(4π)4

�
34

3
C2(A)2 −

�
20

3
C2(A)− 4C2(R)

�
TRnf

�

Asymptotic freedom:

nf < n+
f =

11N

4TR
nf → n+

f =⇒ β0 → 0
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Gauge theories with fermions
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β1 = β1g − β1fnf

β1 < 0 =⇒ β1g

β1f
= n−

f < nf

n−
f < nf < n+

f non-trivial zero of the beta function g2∗ = −β0

β1
> 0
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