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RG flows on the lattice

e Studies of the RG flow in lattice gauge theories are ubiquitous

e Different techniques have been developed (EoS, SF, MCRG)

e Existence of nontrivial fixed points, determination of the critical exponents
¢ FHow of the couplings in different schemes

e Applications to 3D theories of fermions (GN, Thirring, graphene)

e Applications to 4D gauge theories coupled to matter (QCD, BSM models)
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Fixed points

In a neighbourhood of a fixed point:  B8(g™) =0

. d
0Gi = gi — 9; ; ﬂ@ (0g:) = M;;0g; + O (592)
v, 08
agj g

Choosing a basis of eigenvalues of M we find:

2y = —yiu; +O(u?),  wi(p) = <ﬂ> _yiu-(u’)
dlu, 1 [t/ Y 1 ILL/ 1

Define the scaling dimension of the associated operator:

Ai=di+v=D—y
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Relevant couplings

Power-law scaling in the neighbourhood of a fixed point suggests a classification of the
couplings:

1.yi> O: relevant couplings, diverge in the IR, need to be fine
tuned at the cut-off scale.

2.yi < O: irrelevant couplings, their value at the cut-off scale has
no influence on the low-energy physics.

&s

4*%*

e /

3.yi = 0: marginal couplings.
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Scheme-dependence

Consider the couplings in two different schemes:

6@ — 509 — —— =
dp O/ )
and substitute in the eq. above:
9g; ~
/B’L - 8§a /BCL

beta functions transform covariantly under a change of scheme
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Invariance of the critical exponents

Taking one more derivative wrt gs

0B; Dg; %g; ~  0gi 0Ba
- — ~ ~ a + = ~
zj: dg; Ogy Z {5‘90,391)5 09a Oy

a

Introducing the matrix S:
. 09

Sz'a, — ~
04,

~

g*

and evaluating everything at the critical point, yields:

Z M;; Sy = Z Sia May,
7 a

M and Jf have the same eigenvalues
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Recent numerical work on graphene

® | ow-energy excitations: linear dispersion relation at the corners of the BZ

® Dirac Hamiltonian for 2 flavors of 4 components massless spinors [G Semenoff, 84]
e Electron speed v ~ ¢/300; breaking of Lorentz symmetry

® 4-fermi interactions + Coulomb [IF Herbut, O8]

e 3-dim Coulomb interaction [DT Son, 07; J Drut & DT Son, 08]

® Alternative formulation as a deformed Thirring model [SJ Hands, 08]

® Strongly coupled theory, analytical results in the large nr limit

® |dentification of a RG fixed point, separating gapless/gapped phase

® Nonperturbative studies: lattice/Schwinger-Dyson egs
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Phase diagrams

Sp = — / d?zdt D) + <0 / drdt (0A)? [DT Son 07, J Drut 09]
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RG flows & scaling laws

— W

Order parameter: (1))

Relevant parameters: m, t =1/ 92 —1/ 93

Scaling of the order parameter is dictated by the linearized RGE
(in the neighbourhood of the fixed point)

m = (G)° F (t(y) /7

(W) ~ ¢ () ~m*/°

Critical exponents are determined by the e.v. of the linearized RG flow:

D_ m m
p=="—2m 5=
Yt D_ym
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Lattice simulations

Lattice simulations of fermionic systems are computationally challenging:

7 = / Do e >l (det D)

- /D¢DxDx* e~ SIel=x"(DTD) " 'x

Simulations are performed at finite m and finite volume
System is always driven away from the fixed point

Fixed points can be identified from the scaling laws

Input parameters: g, m

Observables: —

<¢¢>7 MH7

9.
om

Jdc needs to be determined together with the critical
exponents

0 log(Yy))
0logm

Yy),
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Scaling laws

RG equations imply simple scaling rules [JB Kogut, MP Lombardo,G Schierholz, LDD 90s]

m = B{)° + At(ipyp) 0= 1/P)

) 4 By

g° < g>

0,
lim R =
0 {1/ (5—%), 9° > gz

Rl _ =1/0

g=—4dc

Check the consistency of lattice data with the existence of a fixed point
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(old) Results for the Thirring model

5= [ [6()Due) + 2 (Fniw)
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[J Drut 09]
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Finite-size scaling

Finite-size effects can be incorporated in the RG analysis [LDD & SJ Hands 97]

m = () F (#(0) "8, L ) TP

Taylor expansion of the scaling function yields for the E0S
m = B(y)° + A(t + CL™V¥) (gpyp) 0~

The exponents determined from this fit are the ones in the thermodynamical limit

Recently used to analyse the nt dependence of the order parameter at the critical coupling:

m = B\ + A[(ny — ne) + CL; ") () 0—1/P)

[SJ Hands et al O8] y
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Finite-size scaling for graphene
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Comments

® Assess the systematic errors involved in the numerical simulations

® Fermion discretization, staggered, chiral fermions

® Square lattice vs hexagonal lattice”

® [irst results on hex lattices have been presented at the Lattice 2011 conference
® Finite-size scaling

® |mportance of the fixed point

® Other interactions?

16
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RG flows for 4

D gauge theories

Pure YM

QCD-like
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Conformal window in SU(N) gauge theories

18
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Schrodinger functional

Finite-volume renormalization scheme:
size of the system defines the renormalization scale, A
impose Dirichlet boundary conditions

Normalization to match perturbation theory.

The renormalized charge is an observable, i.e. it can be
measured by numerical simulations.

The definition above extends outside the perturbative [M Luscher et al 90s]
regime and yields a nonperturbative coupling.

The coupling depends on one scale only, the finite size
of the system.

19
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SF - running of the coupling

The running of the coupling as the scale is varied by a factor s is encoded in the step
scaling function:

>(u, s,a/L) = §°(go,sL/a) ‘gz(gO,L/a):u

Lattice step scaling is affected by lattice artefacts, i.e. depends on the details of the UV
regulator. We can define a continuous step scaling:

o(u,s) = lim X(u,s,a/L)

a/L_>O \

o(u,s) dr

w  VEp(Vr)

L/a: resolution of the theory

—2log s =
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SF - running of the coupling

At the fixed point:

o(u,s) =u <= o(u,s)/u=1
In the neighbourhood of the fixed point, the running is very slow.
Need a high statistical accuracy in order to resolve the physically interesting behaviour.
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SF - running of the mass

The renormalized mass is defined as:

Zp(L) = \/3f1/ fp(L/2) T

f1= —1/12L6/d3u d*v d®y d*z (T (u)ys7°C () (W) 7¢(2))

fr(zo) = —1/12/d3yd32@(flﬁ‘o)%TW(fl?o)f(y)%TaC(Z»-
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SF - running of the mass

Step scaling functions for the mass:

ZP(g()a SL/CL)

> L) =
P(u7 Sja/ ) ZP(907L/0’) EQ(L):’U,

op(u,5) = lim Sp(u,5,a/L)

Relation to the anomalous dimension:

o (L) (do/(260)) exp [/ﬁ dz (% - %)}
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SF - running of the mass

In the neighlbourhood of the fixed point:

/m(u/S) dm /s dq
m(p) M w4

log[op(s,u)| = —v.logs

Hence we can define an estimator for the anomalous dimension:

. loglop(u,s)
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MCRG

Follow the flow of bare couplings under RG transformations (blocking)
Each blocking step changes the scale by a factor s.

Two methods:

1. Compute directly the matrix M that defines the linearized RG flow

2. Find the RG-transformed couplings by matching observables

27
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Computation of the linearized

Theory is defined by the action:

RG transformation:

Fixed point:

RG transformation

28
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Computation of the linearized RG transformation

Close to the fixed point:

g _ Z (g4 —

and therefore:
AS™)  —~ dg” sy S IE
PYCEY P CE Py 5 M)

We can evaluate the vev in the LHS and RHS:;

= (578" Y) = (s = A

J ¥

(n) g(n) () gy — )
= (5785 = {98 ) = By
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Computation of the linearized RG transformation

and finally:

= |T=B"1A

Blocking transformation:

satisfies

30

Tuesday, 6 September 2011



Conclusions

oM C simulations have already been used for the study of graphene

o RG fixed points can be identified from the scaling of the order parameter (and
susceptibilities) in the neighbourhood of the fixed point

estudy of systematic errors - hexagonal lattice, different types of fermions
e other methods have lbeen used for the study of 4D field theory
ethese new methods could be used for condensed matter systems

egraphene as a testing ground?

31
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Gauge theories with fermions

d
B(g) = u@g(u) = —Bog® — B1g° + O(g")

1 [11 4
50 — (47_‘_)2 _ 3 CS(A) o gTRnf]

1 [34 20
51 — (47‘_)4 3 CQ(A)2 — (302(14) — 4CQ(R)> TRnf]

Asymptotic freedom:
11
ng <nf= ny = nt = fo = 0
R
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Gauge theories with fermions

B1 = Big — Bifny
619

1 <0 — —=n

By

- +
nf <nf<nf

non-trivial zero of the beta function
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