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Introduction

There are many fermion models (1d Fermi gas at low
temperature, XYZ model, a large class of 2d classical spin
systems, like Ashkin-Teller mode), whose rigorous infrared RG
analysis is based on two key properties:

I The flow of the effective coupling (the beta function) is the
same, up to exponentially small terms, as the analogous
flow for the spinless Tomonaga model (that is the Luttinger
model with ultraviolet cutoff and local interaction, which is
equivalent to the Thirring model with fixed ultraviolet
cutoff).

I The beta function for this special model (which is not
solvable) is asymptotically vanishing, so that the effective
coupling on large scales is essentially constant and of the
same order of the coupling on small scales.
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The role of the Ward Identities

The most clear proof of this property is based on the Ward
identities obtained by a chiral local gauge transformation,
applied to the Tomonaga model with infrared cutoff (which is
removed at the end).

This is an old approach in the physical literature, but its rigorous
implementation in an RG scheme is not trivial at all, because
the ultraviolet and infrared cutoffs destroy local Gauge
invariance and produce not negligible correction terms with
respect to the formal Ward identities.
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The strategy

The solution of the problem is in the use of a new set of
identities, that we call Correction Identities, relating the
corrections to the Schwinger functions.

By combining Ward and Correction identities with a Dyson
equation, the vanishing of the Beta function follows, so that the
infrared cutoff can be removed.

As a byproduct, even the ultraviolet cutoff can be removed,
after a suitable ultraviolet renormalization, so that a Euclidean
Quantum Field Theory corresponding to the Thirring model at
imaginary time is constructed, for any value of the mass.
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The model is not Hamiltonian and can be defined in terms of
Grassmannian variables. It describes a system of two kinds of
fermions with linear dispersion relation interacting with a local
potential.

Let D be the set of space-time momenta

k = (k , k0), k =
2π
L

(
n +

1
2

)
, k0 =

2π
β

(
n0 +

1
2

)
With each k ∈ D we associate four Grassmannian variables

ψ̂σk,ω, σ, ω ∈ {+,−}

In space coordinates:

ψσx,ω = (Lβ)−1
∑

k

eiσkxψ̂σk,ω, x = (x , x0)
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The free model is described by the free Gaussian measure

P(dψ) = Dψ 1
N

exp

{
−Z0

Lβ

∑
ω=±1

∑
k∈D

Cε
h,0(k)(−ik0 + ωk)ψ̂+

k,ωψ̂
−
k,ω

}

gω(x− y) =< ψ−x,ωψ
+
y,ω′ >=

δω,ω′

Lβ

∑
k

χεh,0(k)

−ik0 + ωk
e−ik(x−y)

χεh,0 = [Cε
h,0]−1

χεh,0(k) is a smooth function, which, for ε = 0, has support in
the interval {γh−1 ≤ |k| ≤ γ}, γ > 1, and is equal to 1 in the
interval {γh ≤ |k| ≤ 1}.
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The interacting model

The correlation functions of density and field operators can be
obtained by the generating functional

W(φ, J) = log
∫

P(dψ) exp

{
− V (ψ)+

∑
ω

∫
dx
[
Jx,ωZ (2)

0 ρx,ω + φ+x,ωψ
−
x,ω + ψ+

x,ωφ
−
x,ω

]}

V (ψ) = λ(Z0)2
∫

dx ψ+
x,+ψ

−
x,+ψ

+
x,−ψ

−
x,−, ρx,ω = ψ+

x,ωψ
−
x,ω

For example: Z (2)
0 = Z0 = 1
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Examples od correlation functions
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The scale decomposition

χh,0(k) =
0∑

j=h

fj(k)⇒ ψ̂±k,ω =
0∑

j=h

ψ̂
±(j)
k,ω

supp fj(k) = {γ j−1 ≤ |k| ≤ γ j+1}, h ≤ j ≤ 0

P(dψ) =
0∏

j=h

P(dψ(j))

g(j)
ω (x− y) =< ψ

(j)−
x,ω ψ

(j)+
y,ω′ >=

δω,ω′

Lβ

∑
k

fj(k)

(−ik0 + ωk)
e−ik(x−y)

|g(j)
ω (x− y)| ≤ CM

γ j

1 + [γ j |x− y|]M
, ∀M ≥ 0
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The effective potential on scale j is defined iteratively so that

eW(φ,J) = e−LβEj

∫
PZ̃j ,Ch,j

(dψ)e−V (j)(
√

Zjψ)+B(j)(
√

Zjψ,φ,J)

where Z̃j = Z̃j(k), j = h, . . . ,0 are suitable functions of k,
independent of the IR cutoff h for j > h,

Zj = max
k

Z̃j(k), Z̃0(k) = Z0 = 1

[Ch,j(k)]−1 =

j∑
i=h

fj(k) ≡ χh,j(k)

and PZ̃j ,Ch,j
(dψ) is defined as P(dψ), with Z̃j in place of Z0 and

Ch,j in place of Ch,0.
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If j = 0, we have

B(0)(ψ, φ, J) =
∑
ω

∫
dx
[
Jx,ωZ (2)

0 ψ+
x,ωψ

−
x,ω + φ+x,ωψ

−
x,ω + ψ+

x,ωφ
−
x,ω

]
Z (2)

0 = 1, V (0)(ψ) = V (ψ), E0 = 0

First integration step

eW(φ,J) =

∫
PZ0,Ch,−1(dψ)

∫
PZ0,f

−1
0

(dψ(0))·

· e−V (0)
(√

Z0[ψ+ψ(0)]
)
+B(0)

(√
Z0[ψ+ψ(0)],φ,J

)

= e−LβE−1

∫
PZ0,Ch,−1(dψ)e−V (−1)

(√
Z0ψ

)
+B(−1)

(√
Z0ψ,φ,J

)

This defines E−1, V (−1), B(−1) and Z̃−1(k) = Z0.
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V (−1)(ψ) =
∑
m≥1

ω1,...,ωm

∫
dx1 . . . dx2mW (−1)

2m,ω(x)
2m∏
i=1

ψσi
xi ,ωi

W (−1)
2m,ω(x) = yi = xm+i

A similar representation is valid for B(−1) (ψ, φ, J), with at least
one external line of type J or ϕ, but possibly no external line of
type ψ.
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The localization operation

(Lβ)−1
∫

dx|W (−1)
2m,ω(x)| ≤ Am

∑
n>m/2

(C|λ|)nγ(−1) 4n−2m
2 −2(−1)(n−1)

= Amγ
−D2m

∑
n>m/2

(C|λ|)n, D2m = 2−m

Note: no n! in the bound

The terms with dimension D2m ≥ 0 need to be localized.

L
∫

dxW (−1)
4,ω (x)

4∏
i=1

ψσi
xi ,ωi

=


∫

dxW (−1)
4,ω (x)

4∏
i=1

ψσi
x1,ωi

if
∑

ωi
= 0

0 otherwise
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L
∫

dxdy W (−1)
2,ω (x,y)ψ+

x,ωψ
−
y,ω =∫

dxdy W (−1)
2,ω (x,y)ψ+

x,ω[ψ−x,ω + (y− x)∇ψ−x,ω] =∫
dxψ+

x,ω∇ψ−x,ω
∫

dy (y− x)W (−1)
2,ω (x,y)

V (−1)(ψ) = LV (−1)(ψ) +RV (−1)(ψ), R ≡ 1− L

LV (−1)(ψ) = ζ−1Fζ(ψ) + l−1Fλ(ψ)

Fζ(ψ) =
∑
ω

∫
dxψ+

x,ω[−∂x0 + iω∂x ]ψ−x,ω

Fλ(ψ) =

∫
dxψ+

x,+ψ
−
x,+ψ

+
x,−ψ

−
x,−
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A similar procedure is applied to B(−1)(
√

Z−1ψ, φ, J). If φ = 0,
we find another marginal term:

B(−1,2)
J (

√
Z−1ψ) = Z−1

∑
ω

∫
dxdydzBω(x,y, z)Jx,ωψ

+
y,ω̃ψ

−
z,ω̃

LB(−1,2)
J (

√
Z−1ψ) =

∑
ω

Z (2)
−1

Z−1

∫
dxJx,ω(

√
Z−1ψ

+
x,ω)(

√
Z−1ψ

−
x,ω)
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We now renormalize PZ−1,Ch,−1(dψ), by adding to it part of the
quadratic part of LV (−1):∫

PZ−1,Ch,−1(dψ) e−V
(−1)(
√

Z−1ψ)+B(−1)
(√

Z−1ψ,φ,J
)

=

e−Lβt−1

∫
PZ̃−2,Ch,−1

(dψ) e−Ṽ
(−1)(
√

Z−1ψ)+B(−1)
(√

Z−1ψ,φ,J
)

Z̃−2(k) = Z−1[1 + χh,−1(k)ζ−1], Z−2 = Z−1[1 + ζ−1]

Ṽ(−1)(
√

Z−1ψ) = V(−1)(
√

Z−1ψ)− ζ−1Z−1F [h,−1]
ζ

The factor exp(−Lβtj) in takes into account the different
normalization of the two functional integrals.



22

We now renormalize PZ−1,Ch,−1(dψ), by adding to it part of the
quadratic part of LV (−1):∫

PZ−1,Ch,−1(dψ) e−V
(−1)(
√

Z−1ψ)+B(−1)
(√

Z−1ψ,φ,J
)

=

e−Lβt−1

∫
PZ̃−2,Ch,−1

(dψ) e−Ṽ
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We now rescale the field so that

Ṽ(−1)(
√

Z−1ψ) = V̂(−1)(
√

Z−2ψ)

B(−1)
(√

Z−1ψ, φ, J
)

= B̂(−1)
(√

Z−2ψ, φ, J
)

LV̂(−1)(ψ) = λ−1Fλ(ψ), λ−1 =

(
Z−1

Z−2

)2

l−1

∫
PZ̃−2,Ch,−1

(dψ)F (ψ) =

∫
PZ̃−2,Ch,−2

(dψ)

∫
PZ−2 ,̃f

−1
−1

(dψ0) F (ψ+ψ0)

PZ−2 ,̃f
−1
−1

(dψ0) is the integration withpropagator

ĝ(−1)
ω (k) =

1
Z−2

f̃−1(k)

Dω(k)
, f̃j(k) = fj(k)

Zj−1

Z̃j−1(k)
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ĝ(−1)
ω (k) =

1
Z−2

f̃−1(k)

Dω(k)
, f̃j(k) = fj(k)

Zj−1

Z̃j−1(k)



23

We now rescale the field so that
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∫
PZ−2 ,̃f

−1
−1

(dψ0) e−V̂
(−1)(
√

Z−2[ψ+ψ0])+B̂(−1)
(√

Z−2[ψ+ψ0],φ,J
)

≡ e−LβẼ−1−V(−2)(
√

Z−2ψ)+B(−2)
(√

Z−2ψ,φ,J
)

Hence we get the effective potential on scale −2 and
E−2 = E−1 + t−1 + Ẽ−1.

The previous procedure can be iterated and we get similar
expressions with j and j − 1 in place of −1 and −2.

Note that the propagator is independent of the infrared cutoff
for j > h and f̃j(k) ≤ fj(k)(1 + ζj), so that ĝ(i) satisfies the same
bound as g(i).
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The flow of the running coupling constants and the
renormalization constants

Let εj = max
i≥j
|λi |, λ0 = λ; then

λj−1 = λj + βλ(λj , δj , . . . , λ0, δ0) = λj + O(ε2
j )

Zj−1

Zj
= 1 + ζj = 1 + bλ2

j + O(ε3
j )

The main difficulty is to prove that εj stays bounded and of
order λ, uniformly in j ≥ h and in the infrared cutoff h.
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The tree expansion
At the end of the integration procedure we get

W(ϕ, J) = −LβEL,β +
∑

mφ+nJ≥1

S(h)
2mφ,nJ (φ, J)

We can expand the functional S(h)
2mφ,nJ (φ, J), the effective

potential and the beta function as a sum of terms. Each term is
associated with a tree, which describes how this term is
produced along the iterative integration procedure.

Let us consider, in particular, the effective potential on scale j .
We get:

V(j)(
√

Zjψ) + LβẼj+1 =

∞∑
n=1

∑
τ∈Tj,n

∑
P∈Pτ

√
Zj
|Pv0 |

∫
dxv0ψ̃(Pv0)K (j+1)

τ,P (xv0)

ψ̃(Pv ) =
∏

f∈Pv

ψ
σ(f )
x(f ),ω(f )
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K (j+1)
τ,P (xv0) is a suitable function, which is obtained by summing

the values of all the Feynmann graphs compatible with P, and
applying iteratively in the vertices of the tree, different from the
endpoints and v0, the R-operation, starting from the vertices
with higher scale.
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The main bound

In order to control, uniformly in L and β, the various sums in the
tree expansion, one has to exploit in a careful way the R
operation acting on the vertices of the tree.

In absence of the R operation, one gets the dimensional bound
(here it is essential that the particles are fermions):∫

dx|K (j+1)
τ,P (x)| ≤ Lβ (Cεj+1)nγ−j(−2+|Pv0 |/2) ·

∏
v not e.p

(
Zhv

Zhv−1

) |Pv |
2

γ−(−2+ |Pv |
2 )

This bound allows us to associate a factor γ2−|Pv |/2 with any
trivial or non trivial vertex of the tree. This would allow us to
control the sums over the scale labels and Pτ , provided |Pv |
were larger than 4 in all vertices, which is however not true.
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The effect of the R operation is to improve the bound, so that
there is a factor less than 1 associated even to the vertices
where |Pv | is equal to 2 or 4.

Roughly, this follows from the fact that, in the Taylor expansion
of the external ψ field in a vertex of scale hv , each derivative
includes in the bound the difference between two points of the
corresponding cluster, hence a bad factor γ−hv , while the field
derivative produces a good factor γhv′ in the vertex v ′ where it
is contracted.

This modifies the previous bound, by adding a factor γ−1 for
each vertex belonging to the path joining v with v ′ along the
tree.
It is easy to see that, in the new bound, we can associate to
any vertex a factor γdv , with dv = 2− |Pv |/2− rv < 0.
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Existence of the infrared limit
Let us add a superscript (h) to the running couplings and the
renormalization constants, to stress their dependence on the
infrared cutoff end put Z (1,h)

j = Z (h)
j .

If h′ < h,

λ
(h′)
j = λ

(h)
j , Z (i,h′)

j = Z (i,h)
j , j = 0, . . . ,h + 1

λ
(h′)
h = λ

(h)
h + O(ε2

h), Z (i,h′)
h /Z (i,h)

h = 1 + O(ε2
h)

If εh stays small for h→ −∞, one can remove the infrared
cutoff and show that

λj −−−−→j→−∞ λ−∞(λ),
Z (i)

j−1

Z (i)
j

−−−−→j→−∞ ηi(λ−∞)

λ−∞(λ) and ηi(λ−∞) are analytic functions.
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The Green function with 4 external legs

−Ĝ4
+(k1,k2,k3,k4) = λĝ−(k4)

[
Ĝ2
−(k3)Ĝ2,1

+ (k1 − k2,k1,k2)+

+
1

Lβ

∑
p

G4,1
+ (p; k1,k2,k3,k4 − p)

]
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The RG analysis allows to get rigorously dimensional bounds
on the correlation functions Fourier transforms.

In particular, if we fix the external momenta in the Dyson
equation so that

k1 = k4 = −k2 = −k3 = k̄, |k̄| = γh

and εh is small enough, we get

Ĝ2
ω(k̄) =

1

Z (1)
h Dω(k̄)

[1 + O(ε2
h)], Dω(k) = −ik0 + ωk

Ĝ2,1
ω (2k̄, k̄,−k̄) = −

Z (2)
h(

Z (1)
h

)2
Dω(k̄)2

[1 + O(ε2
h)]

Ĝ4
+(k̄,−k̄,−k̄, k̄) =

1(
Z (1)

h

)2
|k̄|4

[−λh + O(ε2
h)]
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l.h.s. =
1(

Z (1)
h

)2
|k̄|4

[λh + O(ε2
h)]

first term in the r.h.s. =
Z (2)

h(
Z (1)

h

)3
|k̄|4

λ[1 + O(ε2
h)]

By local gauge invariance
Z (2)

h

Z (1)
h

= 1 + O(εh)
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Were we able to bound the second term in the r.h.s. as

C
ε2

h(
Z (1)

h

)2
|k̄|4

then, by a simple iterative argument, we could prove that, if λ is
small enough,

|λ(h)j | ≤ 2|λ|, ∀h and j ≥ h

implying that the Tomonaga model is well defined.

However, the RG analysis only allows us to bound such term as

C
ε2

h(
Z (1)

h

)2
|k̄|4

[
γCεh|h| − 1

εh

]

which is of course not sufficient.
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The natural guess is that the origin of the problem is in the fact
that one is not taking into account some crucial cancellations
related with the gauge invariance.

Hence, inspired by the analysis in the physical literature (W.
Metzner and C. Di Castro, PRB 47, 1993), we rewrite Ĝ4,1

ω in
terms of Ĝ4

+ by suitable Ward identities, that is the identities
obtained by applying the chiral Gauge transformation

ψ±x,+ → e±iαxψ±x,+, ψ±x,− → ψ±x,−

in the generating functional.

As I will discuss, this is not enough, because the corrections to
the formal WI related with the cutoffs satisfy bounds of the
same type of the previous one.

The problem is finally solved by using other identities, which we
call correction identities.
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The first Ward identity

Dω(p) = −ip0 + ωp,
∫

dkC+(k,k− p)ψ+
k,+ψ

−
k−p,+

Cω(k+,k−) = [Ch,0(k−)− 1]Dω(k−)− [Ch,0(k+)− 1]Dω(k+)
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At graph level, the Ward identities follow from the trivial identity

1
Dω(k)

− 1
Dω(k + p)

=
Dω(p)

Dω(k)Dω(k + p)

One could guess that the correction term ∆2,1
+ is negligible.

However, this is not true, but we have the first correction identity

The filled point represents∫
dkC+(k,k− p)ψ+

k,+ψ
−
k−p,+ −

∑
ω

νωDω(p)

∫
dkψ+

k,ωψ
−
k−p,ω
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I ν+, ν− are O(λ) and weakly dependent on h.
I the term H2,1

+ is indeed negligible, in the sense that, if we
can make the limit h→ −∞, its contribution goes to 0 as
the external momenta go to 0 (of course staying much
larger than γh).

If we insert the correction identity in the WI, we get

(1− ν+)D+(p)Ĝ2,1
+ (p,k,q)− ν−D−(p)Ĝ2,1

− (p,k,q) =

= Ĝ2
+(q)− Ĝ2

+(k) + Ĥ2,1
+ (p,k,q)

The presence of G2,1
+ in the correction identity is not a problem.

In fact, this function satisfies another Ward identity and a
corresponding correction identity, involving the same constants
ν+, ν−, and we get

(1−ν+)D−(p)Ĝ2,1
− (p,k,q)−ν−D+(p)Ĝ2,1

+ (p,k,q) = Ĥ2,1
− (p,k,q)

Hence, we can represent Ĝ2,1
+ as a linear combination of

propagators, as in the case of the formal WI, up to negligible
terms.



43

I ν+, ν− are O(λ) and weakly dependent on h.
I the term H2,1

+ is indeed negligible, in the sense that, if we
can make the limit h→ −∞, its contribution goes to 0 as
the external momenta go to 0 (of course staying much
larger than γh).

If we insert the correction identity in the WI, we get

(1− ν+)D+(p)Ĝ2,1
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+ (p,k,q)

The presence of G2,1
+ in the correction identity is not a problem.

In fact, this function satisfies another Ward identity and a
corresponding correction identity, involving the same constants
ν+, ν−, and we get

(1−ν+)D−(p)Ĝ2,1
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The first WI can be used to prove that

Z (2)
h

Z (1)
h

= 1 + O(εh)

In order to get this result, we put k = −q = k̄, with |k̄| = γh. For
these values of the external momenta, Ĥ2,1

− (p,k,q) is not
negligible, but one can show that∣∣∣∣∣∆̂2,1

+ (2k̄, k̄,−k̄)

D+(2k̄)

∣∣∣∣∣ ≤ Cγ−2hεh
Z (2)

h(
Z (1)

h

)2
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If one inserts this identity in the Dyson equation, the two terms
containing the four point function give the right bound, but the
correction term ∆4,1

+ /D+(p) has the same bad bound as the
original one, so making apparently useless the WI.

However, there is again a correction identity, that allows us to
solve this problem.
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The second correction identity

In this case, to show that the contribution of Ĥ4,1
+ has the right

bound is not so simple, since we need to evaluate it for external
momenta of order γh.
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It turns out that we have to evaluate a correlation very similar to
the four point function with one of the external vertices
substituted with the correction vertex and the free propagator
entering this special vertex.
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We can study G̃4 by a multiscale analysis very similar to the
one for Ĝ4.

The presence of a ”special” vertex has however the effect that a
new running coupling appears, associated with the local part of
the terms with four external lines among which one is the
dotted line, to which the bare propagator ĝ(k4) is associated;
we will call this new running coupling constant λ̃j .

It would seem that we have a problem more difficult than our
initial one, since we have now to control the flow of two running
coupling constants, λj and λ̃j , instead of one.

However, it turns out that the “counterterms” ν± can be chosen
so that λj and λ̃j are essentially proportional.

One then gets for G̃4 a bound very similar to the one for Ĝ4,
except that λh is replaced by λ̃h and there is no wave function
renormalization associated to the external line with momentum
k4.
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We can however identify two class of terms in the expansion of
G̃4 and summing them has the effect that also the external line
with momentum k4 is dressed by the interaction.

λ̃j∗
1

D−(k4)
− λj∗

1
ZhD−(k4)

 0∑
j=h+1

z̃jZjD−(k4)

 1
D−(k4)

|λ̃j − αλj | ≤ cεhγ
j/2, |z̃jZj − αzjZj | ≤ cεhγ

j/2
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Hence, we get:

αλj∗
1

D−(k4)

[
1−

∑0
j=h+1 zjZj

Zh

]
+

O(εh)

ZhD−(k4)

0∑
j=h+1

zjZj = Zh − 1 ⇒ 1−
∑0

j=h+1 zjZj

Zh
=

1
Zh

|λG̃4| ≤ C
ε2

h(
Z (1)

h

)2
|k̄|4

Remark - The improvement of the bound is due to the
cancellations implied by the inductive hypothesis that λj does
not grow as j → −∞. In order to use this property we had to
choose ν± so that λ̃j ' αλj .
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choose ν± so that λ̃j ' αλj .
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Hence, we get:

αλj∗
1

D−(k4)

[
1−

∑0
j=h+1 zjZj

Zh

]
+

O(εh)

ZhD−(k4)

0∑
j=h+1

zjZj = Zh − 1 ⇒ 1−
∑0

j=h+1 zjZj

Zh
=

1
Zh

|λG̃4| ≤ C
ε2

h(
Z (1)

h

)2
|k̄|4

Remark - The improvement of the bound is due to the
cancellations implied by the inductive hypothesis that λj does
not grow as j → −∞. In order to use this property we had to
choose ν± so that λ̃j ' αλj .
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