Rigorous construction of Luttinger liquids through Ward Identities

G. Benfatto

Università di Roma "Tor Vergata"
兰

Workshop on Quantum Field Theory aspects of Condensed Matter Physics
Roma, Frascati, September 6-9, 2011

Outline

Introduction
Abstract
References
The Tomonaga model with infrared cutoff
The model
The RG approach
The Beta function
The multiscale expansion
Existence of the infrared limit
The Dyson equations
The Green function with 4 external legs
Gauge invariance
The first Ward identity
The second Ward identity
The second correction identity

Outline

Introduction
Abstract
References
The Tomonaga model with infrared cutoff
The model
The RG approach
The Beta function
The multiscale expansion
Existence of the infrared limit
The Dyson equations
The Green function with 4 external legs
Gauge invariance
The first Ward identity
The second Ward identity
The second correction identity

Introduction

There are many fermion models (1d Fermi gas at low temperature, XYZ model, a large class of 2d classical spin systems, like Ashkin-Teller mode), whose rigorous infrared RG analysis is based on two key properties:

Introduction

There are many fermion models (1d Fermi gas at low temperature, XYZ model, a large class of 2d classical spin systems, like Ashkin-Teller mode), whose rigorous infrared RG analysis is based on two key properties:

- The flow of the effective coupling (the beta function) is the same, up to exponentially small terms, as the analogous flow for the spinless Tomonaga model (that is the Luttinger model with ultraviolet cutoff and local interaction, which is equivalent to the Thirring model with fixed ultraviolet cutoff).

Introduction

There are many fermion models (1d Fermi gas at low temperature, XYZ model, a large class of 2d classical spin systems, like Ashkin-Teller mode), whose rigorous infrared RG analysis is based on two key properties:

- The flow of the effective coupling (the beta function) is the same, up to exponentially small terms, as the analogous flow for the spinless Tomonaga model (that is the Luttinger model with ultraviolet cutoff and local interaction, which is equivalent to the Thirring model with fixed ultraviolet cutoff).
- The beta function for this special model (which is not solvable) is asymptotically vanishing, so that the effective coupling on large scales is essentially constant and of the same order of the coupling on small scales.

The role of the Ward Identities

The most clear proof of this property is based on the Ward identities obtained by a chiral local gauge transformation, applied to the Tomonaga model with infrared cutoff (which is removed at the end).

The role of the Ward Identities

The most clear proof of this property is based on the Ward identities obtained by a chiral local gauge transformation, applied to the Tomonaga model with infrared cutoff (which is removed at the end).

This is an old approach in the physical literature, but its rigorous implementation in an RG scheme is not trivial at all, because the ultraviolet and infrared cutoffs destroy local Gauge invariance and produce not negligible correction terms with respect to the formal Ward identities.

The strategy

The solution of the problem is in the use of a new set of identities, that we call Correction Identities, relating the corrections to the Schwinger functions.

The strategy

The solution of the problem is in the use of a new set of identities, that we call Correction Identities, relating the corrections to the Schwinger functions.

By combining Ward and Correction identities with a Dyson equation, the vanishing of the Beta function follows, so that the infrared cutoff can be removed.

The strategy

The solution of the problem is in the use of a new set of identities, that we call Correction Identities, relating the corrections to the Schwinger functions.

By combining Ward and Correction identities with a Dyson equation, the vanishing of the Beta function follows, so that the infrared cutoff can be removed.

As a byproduct, even the ultraviolet cutoff can be removed, after a suitable ultraviolet renormalization, so that a Euclidean Quantum Field Theory corresponding to the Thirring model at imaginary time is constructed, for any value of the mass.

Outline

Introduction
Abstract
References
The Tomonaga model with infrared cutoff
The model
The RG approach
The Beta function
The multiscale expansion
Existence of the infrared limit
The Dyson equations
The Green function with 4 external legs
Gauge invariance
The first Ward identity
The second Ward identity
The second correction identity

References

- G. Benfatto, G. Gallavotti: Perturbation Theory of the Fermi Surface in a Quantum Liquid. A General Quasiparticle Formalism and One-Dimensional Systems, J. Stat. Phys. 59, 541-664 (1990).

References

- G. Benfatto, G. Gallavotti: Perturbation Theory of the Fermi Surface in a Quantum Liquid. A General Quasiparticle Formalism and One-Dimensional Systems, J. Stat. Phys. 59, 541-664 (1990).
- G. Benfatto, V. Mastropietro: Renormalization Group, hidden symmetries and approximate Ward identities in the XYZ model, Rev. Math. Phys. 13, 1323-1435, 2001.

References

- G. Benfatto, G. Gallavotti: Perturbation Theory of the Fermi Surface in a Quantum Liquid. A General Quasiparticle Formalism and One-Dimensional Systems, J. Stat. Phys. 59, 541-664 (1990).
- G. Benfatto, V. Mastropietro: Renormalization Group, hidden symmetries and approximate Ward identities in the XYZ model, Rev. Math. Phys. 13, 1323-1435, 2001.
- G. Benfatto, V. Mastropietro: Ward identities and Chiral anomaly in the Luttinger liquid, Comm. Math. Phys. 258, 609-655, 2005.

References

- G. Benfatto, G. Gallavotti: Perturbation Theory of the Fermi Surface in a Quantum Liquid. A General Quasiparticle Formalism and One-Dimensional Systems, J. Stat. Phys. 59, 541-664 (1990).
- G. Benfatto, V. Mastropietro: Renormalization Group, hidden symmetries and approximate Ward identities in the XYZ model, Rev. Math. Phys. 13, 1323-1435, 2001.
- G. Benfatto, V. Mastropietro: Ward identities and Chiral anomaly in the Luttinger liquid, Comm. Math. Phys. 258, 609-655, 2005.
- G. Benfatto, P. Falco, V. Mastropietro: Functional Integral Construction of the Thirring model: axioms verification and massless limit, Comm. Math. Phys. 273, 67-118, 2007.

Outline

Introduction

Abstract
References
The Tomonaga model with infrared cutoff The model
The RG approach
The Beta function
The multiscale expansion
Existence of the infrared limit
The Dyson equations
The Green function with 4 external legs
Gauge invariance
The first Ward identity
The second Ward identity
The second correction identity

The model is not Hamiltonian and can be defined in terms of Grassmannian variables. It describes a system of two kinds of fermions with linear dispersion relation interacting with a local potential.

The model is not Hamiltonian and can be defined in terms of Grassmannian variables. It describes a system of two kinds of fermions with linear dispersion relation interacting with a local potential.
Let \mathcal{D} be the set of space-time momenta

$$
\mathbf{k}=\left(k, k_{0}\right), \quad k=\frac{2 \pi}{L}\left(n+\frac{1}{2}\right), \quad k_{0}=\frac{2 \pi}{\beta}\left(n_{0}+\frac{1}{2}\right)
$$

With each $\mathbf{k} \in \mathcal{D}$ we associate four Grassmannian variables

$$
\hat{\psi}_{\mathbf{k}, \omega}^{\sigma}, \quad \sigma, \omega \in\{+,-\}
$$

The model is not Hamiltonian and can be defined in terms of Grassmannian variables. It describes a system of two kinds of fermions with linear dispersion relation interacting with a local potential.
Let \mathcal{D} be the set of space-time momenta

$$
\mathbf{k}=\left(k, k_{0}\right), \quad k=\frac{2 \pi}{L}\left(n+\frac{1}{2}\right), \quad k_{0}=\frac{2 \pi}{\beta}\left(n_{0}+\frac{1}{2}\right)
$$

With each $\mathbf{k} \in \mathcal{D}$ we associate four Grassmannian variables

$$
\hat{\psi}_{\mathbf{k}, \omega}^{\sigma}, \quad \sigma, \omega \in\{+,-\}
$$

In space coordinates:

$$
\psi_{\mathbf{x}, \omega}^{\sigma}=(L \beta)^{-1} \sum_{\mathbf{k}} e^{i \sigma \mathbf{k} \mathbf{x}} \hat{\psi}_{\mathbf{k}, \omega}^{\sigma}, \quad \mathbf{x}=\left(x, x_{0}\right)
$$

The free model is described by the free Gaussian measure

$$
P(d \psi)=\mathcal{D} \psi \frac{1}{\mathcal{N}} \exp \left\{-\frac{Z_{0}}{L \beta} \sum_{\omega= \pm 1} \sum_{\mathbf{k} \in \mathcal{D}} C_{h, 0}^{\varepsilon}(\mathbf{k})\left(-i k_{0}+\omega k\right) \hat{\psi}_{\mathbf{k}, \omega}^{+} \hat{\psi}_{\mathbf{k}, \omega}^{-}\right\}
$$

The free model is described by the free Gaussian measure

$$
\begin{gathered}
P(d \psi)=\mathcal{D} \psi \frac{1}{\mathcal{N}} \exp \left\{-\frac{Z_{0}}{L \beta} \sum_{\omega= \pm 1} \sum_{\mathbf{k} \in \mathcal{D}} C_{h, 0}^{\varepsilon}(\mathbf{k})\left(-i k_{0}+\omega k\right) \hat{\psi}_{\mathbf{k}, \omega}^{+} \hat{\psi}_{\mathbf{k}, \omega}^{-}\right\} \\
g_{\omega}(\mathbf{x}-\mathbf{y})=<\psi_{\mathbf{x}, \omega}^{-} \psi_{\mathbf{y}, \omega^{\prime}}^{+}>=\frac{\delta_{\omega, \omega^{\prime}}}{L \beta} \sum_{\mathbf{k}} \frac{\chi_{h, 0}^{\varepsilon}(\mathbf{k})}{-i k_{0}+\omega k} e^{-i \mathbf{k}(\mathbf{x}-\mathbf{y})}
\end{gathered}
$$

The free model is described by the free Gaussian measure

$$
\begin{gathered}
P(d \psi)=\mathcal{D} \psi \frac{1}{\mathcal{N}} \exp \left\{-\frac{z_{0}}{L \beta} \sum_{\omega= \pm 1} \sum_{\mathbf{k} \in \mathcal{D}} C_{h, 0}^{\varepsilon}(\mathbf{k})\left(-i k_{0}+\omega k\right) \hat{\psi}_{\mathbf{k}, \omega}^{+} \hat{\psi}_{\mathbf{k}, \omega}^{-}\right\} \\
g_{\omega}(\mathbf{x}-\mathbf{y})=<\psi_{\mathbf{x}, \omega}^{-} \psi_{\mathbf{y}, \omega^{\prime}}^{+}>=\frac{\delta_{\omega \omega \omega^{\prime}}}{L \beta} \sum_{\mathbf{k}} \frac{\chi_{h, 0}^{\varepsilon}(\mathbf{k})}{-i k_{0}+\omega k} e^{-i \mathbf{k}(\mathbf{x}-\mathbf{y})} \\
\chi_{h, 0}^{\varepsilon}=\left[C_{h, 0}^{\varepsilon}\right]^{-1} \\
\hdashline \gamma_{\gamma^{h-1} \gamma^{h}}^{1} \mathbf{l}^{1} \mid
\end{gathered}
$$

$\chi_{h, 0}^{\varepsilon}(\mathbf{k})$ is a smooth function, which, for $\varepsilon=0$, has support in the interval $\left\{\gamma^{h-1} \leq|\mathbf{k}| \leq \gamma\right\}, \gamma>1$, and is equal to 1 in the interval $\left\{\gamma^{h} \leq|\mathbf{k}| \leq 1\right\}$.

The interacting model

The correlation functions of density and field operators can be obtained by the generating functional

$$
\begin{aligned}
\mathcal{W}(\phi, J)= & \log \int P(d \psi) \exp \{-V(\psi)+ \\
& \left.\sum_{\omega} \int d \mathbf{x}\left[J_{\mathbf{x}, \omega} Z_{0}^{(2)} \rho_{\mathbf{x}, \omega}+\phi_{\mathbf{x}, \omega}^{+} \psi_{\mathbf{x}, \omega}^{-}+\psi_{\mathbf{x}, \omega}^{+} \phi_{\mathbf{x}, \omega}^{-}\right]\right\}
\end{aligned}
$$

The interacting model

The correlation functions of density and field operators can be obtained by the generating functional

$$
\begin{aligned}
\mathcal{W}(\phi, J)= & \log \int P(d \psi) \exp \{-V(\psi)+ \\
& \left.\sum_{\omega} \int d \mathbf{x}\left[J_{\mathbf{x}, \omega} Z_{0}^{(2)} \rho_{\mathbf{x}, \omega}+\phi_{\mathbf{x}, \omega}^{+} \psi_{\mathbf{x}, \omega}^{-}+\psi_{\mathbf{x}, \omega}^{+} \phi_{\mathbf{x}, \omega}^{-}\right]\right\} \\
V(\psi)= & \lambda\left(Z_{0}\right)^{2} \int d \mathbf{x} \psi_{\mathbf{x},+}^{+} \psi_{\mathbf{x},+}^{-} \psi_{\mathbf{x},-}^{+} \psi_{\mathbf{x},-}^{-}, \quad \rho_{\mathbf{x}, \omega}=\psi_{\mathbf{x}, \omega}^{+} \psi_{\mathbf{x}, \omega}^{-}
\end{aligned}
$$

The interacting model

The correlation functions of density and field operators can be obtained by the generating functional

$$
\begin{aligned}
\mathcal{W}(\phi, J)= & \log \int P(d \psi) \exp \{-V(\psi)+ \\
& \left.\sum_{\omega} \int d \mathbf{x}\left[J_{\mathbf{x}, \omega} Z_{0}^{(2)} \rho_{\mathbf{x}, \omega}+\phi_{\mathbf{x}, \omega}^{+} \psi_{\mathbf{x}, \omega}^{-}+\psi_{\mathbf{x}, \omega}^{+} \phi_{\mathbf{x}, \omega}^{-}\right]\right\} \\
V(\psi)= & \lambda\left(Z_{0}\right)^{2} \int d \mathbf{x} \psi_{\mathbf{x},+}^{+} \psi_{\mathbf{x},+}^{-} \psi_{\mathbf{x},-}^{+} \psi_{\mathbf{x},-}^{-}, \quad \rho_{\mathbf{x}, \omega}=\psi_{\mathbf{x}, \omega}^{+} \psi_{\mathbf{x}, \omega}^{-}
\end{aligned}
$$

For example: $\quad Z_{0}^{(2)}=Z_{0}=1$

Examples od correlation functions

㟺

Outline

Introduction

Abstract
References
The Tomonaga model with infrared cutoff
The model
The RG approach
The Beta function
The multiscale expansion
Existence of the infrared limit
The Dyson equations
The Green function with 4 external legs
Gauge invariance
The first Ward identity
The second Ward identity
The second correction identity

The scale decomposition

$$
\begin{aligned}
\chi_{h, 0}(\mathbf{k}) & =\sum_{j=h}^{0} f_{j}(\mathbf{k}) \Rightarrow \hat{\psi}_{\mathbf{k}, \omega}^{ \pm}=\sum_{j=h}^{0} \hat{\psi}_{\mathbf{k}, \omega}^{ \pm(j)} \\
\text { supp } f_{j}(\mathbf{k}) & =\left\{\gamma^{j-1} \leq|\mathbf{k}| \leq \gamma^{j+1}\right\}, \quad h \leq j \leq 0
\end{aligned}
$$

The scale decomposition

$$
\begin{gathered}
\chi_{h, 0}(\mathbf{k})=\sum_{j=h}^{0} f_{j}(\mathbf{k}) \Rightarrow \hat{\psi}_{\mathbf{k}, \omega}^{ \pm}=\sum_{j=h}^{0} \hat{\psi}_{\mathbf{k}, \omega}^{ \pm(j)} \\
\operatorname{supp} f_{j}(\mathbf{k})=\left\{\gamma^{j-1} \leq|\mathbf{k}| \leq \gamma^{j+1}\right\}, \quad h \leq j \leq 0 \\
P(d \psi)=\prod_{j=h}^{0} P\left(d \psi^{(j)}\right)
\end{gathered}
$$

景

The scale decomposition

$$
\begin{gathered}
\chi_{h, 0}(\mathbf{k})=\sum_{j=h}^{0} f_{j}(\mathbf{k}) \Rightarrow \hat{\psi}_{\mathbf{k}, \omega}^{ \pm}=\sum_{j=h}^{0} \hat{\psi}_{\mathbf{k}, \omega}^{ \pm(j)} \\
\operatorname{supp} f_{j}(\mathbf{k})=\left\{\gamma^{j-1} \leq|\mathbf{k}| \leq \gamma^{j+1}\right\}, \quad h \leq j \leq 0 \\
P(d \psi)=\prod_{j=h}^{0} P\left(d \psi^{(j)}\right) \\
g_{\omega}^{(j)}(\mathbf{x}-\mathbf{y})=<\psi_{\mathbf{x}, \omega}^{(j)-} \psi_{\mathbf{y}, \omega^{\prime}}^{(j)+}>=\frac{\delta_{\omega, \omega^{\prime}}}{L \beta} \sum_{\mathbf{k}} \frac{f_{j}(\mathbf{k})}{\left(-i k_{0}+\omega k\right)} e^{-i \mathbf{k}(\mathbf{x}-\mathbf{y})}
\end{gathered}
$$

The scale decomposition

$$
\begin{gathered}
\chi_{h, 0}(\mathbf{k})=\sum_{j=h}^{0} f_{j}(\mathbf{k}) \Rightarrow \hat{\psi}_{\mathbf{k}, \omega}^{ \pm}=\sum_{j=h}^{0} \hat{\psi}_{\mathbf{k}, \omega}^{ \pm(j)} \\
\operatorname{supp} f_{j}(\mathbf{k})=\left\{\gamma^{j-1} \leq|\mathbf{k}| \leq \gamma^{j+1}\right\}, \quad h \leq j \leq 0 \\
P(d \psi)=\prod_{j=h}^{0} P\left(d \psi^{(j)}\right) \\
g_{\omega}^{(j)}(\mathbf{x}-\mathbf{y})=<\psi_{\mathbf{x}, \omega}^{(j)-} \psi_{\mathbf{y}, \omega^{\prime}}^{(j)+}>=\frac{\delta_{\omega, \omega^{\prime}}}{L \beta} \sum_{\mathbf{k}} \frac{f_{j}(\mathbf{k})}{\left(-i k_{0}+\omega k\right)} e^{-i \mathbf{k}(\mathbf{x}-\mathbf{y})} \\
\left|g_{\omega}^{(j)}(\mathbf{x}-\mathbf{y})\right| \leq C_{M} \frac{\gamma^{j}}{1+\left[\gamma^{j}|\mathbf{x}-\mathbf{y}|\right]^{M}}, \quad \forall M \geq 0
\end{gathered}
$$

The effective potential on scale j is defined iteratively so that

$$
e^{\mathcal{W}(\phi, J)}=e^{-L \beta E_{j}} \int P_{\tilde{Z}_{j}, C_{n, j}}(d \psi) e^{-V^{(j)}\left(\sqrt{Z_{j}} \psi\right)+\mathcal{B}^{(j)}\left(\sqrt{Z_{j}} \psi, \phi, J\right)}
$$

where $\tilde{Z}_{j}=\tilde{Z}_{j}(\mathbf{k}), j=h, \ldots, 0$ are suitable functions of \mathbf{k}, independent of the IR cutoff h for $j>h$,

$$
Z_{j}=\max _{\mathbf{k}} \tilde{Z}_{j}(\mathbf{k}), \quad \tilde{Z}_{0}(\mathbf{k})=Z_{0}=1
$$

The effective potential on scale j is defined iteratively so that

$$
e^{\mathcal{W}(\phi, J)}=e^{-L \beta E_{j}} \int P_{\tilde{Z}_{j}, C_{n, j}}(d \psi) e^{-V^{(j)}\left(\sqrt{Z_{j}} \psi\right)+\mathcal{B}^{(j)}\left(\sqrt{Z_{j}} \psi, \phi, J\right)}
$$

where $\tilde{Z}_{j}=\tilde{Z}_{j}(\mathbf{k}), j=h, \ldots, 0$ are suitable functions of \mathbf{k}, independent of the IR cutoff h for $j>h$,

$$
\begin{gathered}
Z_{j}=\max _{\mathbf{k}} \tilde{Z}_{j}(\mathbf{k}), \quad \tilde{Z}_{0}(\mathbf{k})=Z_{0}=1 \\
{\left[C_{h, j}(\mathbf{k})\right]^{-1}=\sum_{i=h}^{j} f_{j}(\mathbf{k}) \equiv \chi_{h, j}(\mathbf{k})}
\end{gathered}
$$

The effective potential on scale j is defined iteratively so that

$$
e^{\mathcal{W}(\phi, J)}=e^{-L \beta E_{j}} \int P_{\tilde{Z}_{j}, C_{h, j}}(d \psi) e^{-V^{(j)}\left(\sqrt{Z_{j}} \psi\right)+\mathcal{B}^{(j)}\left(\sqrt{Z_{j}} \psi, \phi, J\right)}
$$

where $\tilde{Z}_{j}=\tilde{Z}_{j}(\mathbf{k}), j=h, \ldots, 0$ are suitable functions of \mathbf{k}, independent of the IR cutoff h for $j>h$,

$$
\begin{gathered}
Z_{j}=\max _{\mathbf{k}} \tilde{Z}_{j}(\mathbf{k}), \quad \tilde{Z}_{0}(\mathbf{k})=Z_{0}=1 \\
{\left[C_{h, j}(\mathbf{k})\right]^{-1}=\sum_{i=h}^{j} f_{j}(\mathbf{k}) \equiv \chi_{h, j}(\mathbf{k})}
\end{gathered}
$$

and $P_{\tilde{Z}_{j}, C_{h, j}}(d \psi)$ is defined as $P(d \psi)$, with \tilde{Z}_{j} in place of Z_{0} and $C_{h, j}$ in place of $C_{h, 0}$.

If $j=0$, we have

$$
\begin{gathered}
\mathcal{B}^{(0)}(\psi, \phi, J)= \\
\sum_{\omega} \int d \mathbf{x}\left[J_{\mathbf{x}, \omega} Z_{0}^{(2)} \psi_{\mathbf{x}, \omega}^{+} \psi_{\mathbf{x}, \omega}^{-}+\phi_{\mathbf{x}, \omega}^{+} \psi_{\mathbf{x}, \omega}^{-}+\psi_{\mathbf{x}, \omega}^{+} \phi_{\mathbf{x}, \omega}^{-}\right] \\
Z_{0}^{(2)}=1, \quad V^{(0)}(\psi)=V(\psi), \quad E_{0}=0
\end{gathered}
$$

If $j=0$, we have

$$
\begin{gathered}
\mathcal{B}^{(0)}(\psi, \phi, J)=\sum_{\omega} \int d \mathbf{x}\left[J_{\mathbf{x}, \omega} Z_{0}^{(2)} \psi_{\mathbf{x}, \omega}^{+} \psi_{\mathbf{x}, \omega}^{-}+\phi_{\mathbf{x}, \omega}^{+} \psi_{\mathbf{x}, \omega}^{-}+\psi_{\mathbf{x}, \omega}^{+} \phi_{\mathbf{x}, \omega}^{-}\right] \\
Z_{0}^{(2)}=1, \quad V^{(0)}(\psi)=V(\psi), \quad E_{0}=0
\end{gathered}
$$

First integration step

$$
\begin{aligned}
& e^{\mathcal{W}(\phi, J)}=\int P_{Z_{0}, C_{h,-1}}(d \psi) \int P_{Z_{0}, f_{0}^{-1}}\left(d \psi^{(0)}\right) \\
& \cdot e^{-V^{(0)}\left(\sqrt{Z_{0}}\left[\psi+\psi^{(0)}\right]\right)+\mathcal{B}^{(0)}\left(\sqrt{Z_{0}}\left[\psi+\psi^{(0)}\right], \phi, J\right)} \\
& =e^{-L \beta E_{-1}} \int P_{Z_{0}, C_{h,-1}}(d \psi) e^{-V^{(-1)}}\left(\sqrt{Z_{0} \psi}\right)+\mathcal{B}^{(-1)}\left(\sqrt{\left.Z_{0} \psi, \phi, J\right)}\right.
\end{aligned}
$$

If $j=0$, we have

$$
\begin{gathered}
\mathcal{B}^{(0)}(\psi, \phi, J)=\sum_{\omega} \int d \mathbf{x}\left[J_{\mathbf{x}, \omega} Z_{0}^{(2)} \psi_{\mathbf{x}, \omega}^{+} \psi_{\mathbf{x}, \omega}^{-}+\phi_{\mathbf{x}, \omega}^{+} \psi_{\mathbf{x}, \omega}^{-}+\psi_{\mathbf{x}, \omega}^{+} \phi_{\mathbf{x}, \omega}^{-}\right] \\
Z_{0}^{(2)}=1, \quad V^{(0)}(\psi)=V(\psi), \quad E_{0}=0
\end{gathered}
$$

First integration step

$$
\begin{aligned}
& e^{\mathcal{W}(\phi, J)}=\int P_{Z_{0}, C_{h,-1}}(d \psi) \int P_{Z_{0}, f_{0}^{-1}}\left(d \psi^{(0)}\right) \\
& \cdot e^{-V^{(0)}\left(\sqrt{Z_{0}}\left[\psi+\psi^{(0)}\right]\right)+\mathcal{B}^{(0)}\left(\sqrt{Z_{0}}\left[\psi+\psi^{(0)}\right], \phi, J\right)} \\
& =e^{-L \beta E_{-1}} \int P_{Z_{0}, C_{h,-1}}(d \psi) e^{-V^{(-1)}}\left(\sqrt{Z_{0} \psi}\right)+\mathcal{B}^{(-1)}\left(\sqrt{\left.Z_{0} \psi, \phi, J\right)}\right.
\end{aligned}
$$

This defines $E_{-1}, V^{(-1)}, \mathcal{B}^{(-1)}$ and $\tilde{Z}_{-1}(\mathbf{k})=Z_{0}$.

$$
V^{(-1)}(\psi)=\sum_{\substack{m \geq 1 \\ \omega_{1}, \ldots, \omega_{m}}} \int d \mathbf{x}_{1} \ldots d \mathbf{x}_{2 m} W_{2 m, \underline{\omega}}^{(-1)}(\underline{\mathbf{x}}) \prod_{i=1}^{2 m} \psi_{\mathbf{x}_{i}, \omega_{i}}^{\sigma_{i}}
$$

$$
w_{2 m, \omega}^{(-1)}(\underline{x})=\underbrace{\cdots}_{i=x_{m+i}}
$$

$$
\begin{aligned}
& V^{(-1)}(\psi)=\sum_{\substack{m \geq 1 \\
\omega_{1}, \ldots, \omega_{m}}} \int d \mathbf{x}_{1} \ldots d \mathbf{x}_{2 m} W_{2 m, \underline{\omega}}^{(-1)} \mathbf{(x)} \prod_{i=1}^{2 m} \psi_{\mathbf{x}_{i}, \omega_{i}}^{\sigma_{i}} \\
& W_{2 m, \underline{\omega}}^{(-1)}(\underline{\mathbf{x}})=\underbrace{\cdots}_{\psi_{\bar{y}_{1}, \omega_{1}}^{\stackrel{1}{c}} \cdots}
\end{aligned}
$$

A similar representation is valid for $\mathcal{B}^{(-1)}(\psi, \phi, J)$, with at least one external line of type J or φ, but possibly no external line of type ψ.

The localization operation

$$
\begin{gathered}
(L \beta)^{-1} \int d \underline{\mathbf{x}}\left|W_{2 m, \underline{\omega}}^{(-1)}(\underline{\mathbf{x}})\right| \leq A_{m} \sum_{n>m / 2}(C|\lambda|)^{n} \gamma^{(-1) \frac{4 n-2 m}{2}-2(-1)(n-1)} \\
=A_{m} \gamma^{-D_{2 m}} \sum_{n>m / 2}(C|\lambda|)^{n}, \quad D_{2 m}=2-m
\end{gathered}
$$

Note: no n ! in the bound

The localization operation

$$
\begin{gathered}
(L \beta)^{-1} \int d \underline{\mathbf{x}}\left|W_{2 m, \underline{\omega}}^{(-1)}(\underline{\mathbf{x}})\right| \leq A_{m} \sum_{n>m / 2}(C|\lambda|)^{n} \gamma^{(-1)^{\frac{4 n-2 m}{2}-2(-1)(n-1)}} \\
=A_{m} \gamma^{-D_{2 m}} \sum_{n>m / 2}(C|\lambda|)^{n}, \quad D_{2 m}=2-m
\end{gathered}
$$

Note: no n ! in the bound
The terms with dimension $D_{2 m} \geq 0$ need to be localized.

$$
\mathcal{L} \int d \underline{\mathbf{x}} W_{4, \underline{\omega}}^{(-1)}(\underline{\mathbf{x}}) \prod_{i=1}^{4} \psi_{\mathbf{x}_{i}, \omega_{i}}^{\sigma_{i}}= \begin{cases}\int d \underline{\mathbf{x}} W_{4, \underline{\omega}}^{(-1)}(\underline{\mathbf{x}}) \prod_{i=1}^{4} \psi_{\mathbf{x}_{1}, \omega_{i}}^{\sigma_{i}} & \text { if } \sum_{\omega_{i}}=0 \\ 0 & \text { otherwise }\end{cases}
$$

$\mathcal{L} \int d \mathbf{x} d \mathbf{y} W_{2, \omega}^{(-1)}(\mathbf{x}, \mathbf{y}) \psi_{\mathbf{x}, \omega}^{+} \psi_{\mathbf{y}, \omega}^{-}=$
$\int d \mathbf{x} d \mathbf{y} W_{2, \omega}^{(-1)}(\mathbf{x}, \mathbf{y}) \psi_{\mathbf{x}, \omega}^{+}\left[\psi_{\mathbf{x}, \omega}^{-}+(\mathbf{y}-\mathbf{x}) \nabla \psi_{\mathbf{x}, \omega}^{-}\right]=$
$\int d \mathbf{x} \psi_{\mathbf{x}, \omega}^{+} \nabla \psi_{\mathbf{x}, \omega}^{-} \int d \mathbf{y}(\mathbf{y}-\mathbf{x}) W_{2, \omega}^{(-1)}(\mathbf{x}, \mathbf{y})$

曾

$$
\begin{gathered}
\mathcal{L} \int d \mathbf{x} d \mathbf{y} W_{2, \omega}^{(-1)}(\mathbf{x}, \mathbf{y}) \psi_{\mathbf{x}, \omega}^{+} \psi_{\mathbf{y}, \omega}^{-}= \\
\int d \mathbf{x} d \mathbf{y} W_{2, \omega}^{(-1)}(\mathbf{x}, \mathbf{y}) \psi_{\mathbf{x}, \omega}^{+}\left[\psi_{\mathbf{x}, \omega}^{-}+(\mathbf{y}-\mathbf{x}) \nabla \psi_{\mathbf{x}, \omega}^{-}\right]= \\
\int d \mathbf{x} \psi_{\mathbf{x}, \omega}^{+} \nabla \psi_{\mathbf{x}, \omega}^{-} \int d \mathbf{y}(\mathbf{y}-\mathbf{x}) W_{2, \omega}^{(-1)}(\mathbf{x}, \mathbf{y}) \\
V^{(-1)}(\psi)=\mathcal{L} V^{(-1)}(\psi)+\mathcal{R} V^{(-1)}(\psi), \quad \mathcal{R} \equiv 1-\mathcal{L} \\
\mathcal{L} V^{(-1)}(\psi)=\zeta_{-1} F_{\zeta}(\psi)+I_{-1} F_{\lambda}(\psi) \\
F_{\zeta}(\psi)=\sum_{\omega} \int d \mathbf{x} \psi_{\mathbf{x}, \omega}^{+}\left[-\partial_{x_{0}}+i \omega \partial_{\mathbf{x}}\right] \psi_{\mathbf{x}, \omega}^{-} \\
F_{\lambda}(\psi)=\int d \mathbf{x} \psi_{\mathbf{x},+}^{+} \psi_{\mathbf{x},+}^{-} \psi_{\mathbf{x},-}^{+} \psi_{\mathbf{x},-}^{-}
\end{gathered}
$$

A similar procedure is applied to $\mathcal{B}^{(-1)}\left(\sqrt{Z_{-1}} \psi, \phi, J\right)$. If $\phi=0$, we find another marginal term:

$$
\mathcal{B}_{J}^{(-1,2)}\left(\sqrt{Z_{-1}} \psi\right)=Z_{-1} \sum_{\omega} \int d \mathbf{x} d \mathbf{y} d \mathbf{z} B_{\omega}(\mathbf{x}, \mathbf{y}, \mathbf{z}) J_{\mathbf{x}, \omega} \psi_{\mathbf{y}, \tilde{\omega}}^{+} \psi_{\mathbf{z}, \tilde{\omega}}^{-}
$$

A similar procedure is applied to $\mathcal{B}^{(-1)}\left(\sqrt{Z_{-1}} \psi, \phi, J\right)$. If $\phi=0$, we find another marginal term:

$$
\begin{aligned}
\mathcal{B}_{J}^{(-1,2)}\left(\sqrt{Z_{-1}} \psi\right) & =Z_{-1} \sum_{\omega} \int d \mathbf{x} d \mathbf{y} d \mathbf{z} B_{\omega}(\mathbf{x}, \mathbf{y}, \mathbf{z}) J_{\mathbf{x}, \omega} \psi_{\mathbf{y}, \tilde{\omega}}^{+} \psi_{\mathbf{z}, \tilde{\omega}}^{-} \\
\mathcal{L B}_{J}^{(-1,2)}\left(\sqrt{Z_{-1}} \psi\right) & =\sum_{\omega} \frac{Z_{-1}^{(2)}}{Z_{-1}} \int d \mathbf{x} J_{\mathbf{x}, \omega}\left(\sqrt{Z_{-1}} \psi_{\mathbf{x}, \omega}^{+}\right)\left(\sqrt{Z_{-1}} \psi_{\mathbf{x}, \omega}^{-}\right)
\end{aligned}
$$

We now renormalize $P_{Z_{-1}, C_{h,-1}}(d \psi)$, by adding to it part of the quadratic part of $\mathcal{L} V^{(-1)}$:

$$
\begin{array}{r}
\int P_{Z_{-1}, C_{h,-1}}(d \psi) e^{-\mathcal{V}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right)+\mathcal{B}^{(-1)}\left(\sqrt{Z_{-1}} \psi, \phi, J\right)}= \\
e^{-L \beta t_{-1}} \int P_{\tilde{Z}_{-2}, C_{h,-1}}(d \psi) e^{-\tilde{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right)+\mathcal{B}^{(-1)}\left(\sqrt{Z_{-1}} \psi, \phi, J\right)}
\end{array}
$$

We now renormalize $P_{Z_{-1}, C_{h,-1}}(d \psi)$, by adding to it part of the quadratic part of $\mathcal{L} V^{(-1)}$:

$$
\begin{array}{r}
\int P_{Z_{-1}, C_{h,-1}}(d \psi) e^{-\mathcal{V}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right)+\mathcal{B}^{(-1)}\left(\sqrt{Z_{-1}} \psi, \phi, J\right)}= \\
e^{-L \beta t_{-1}} \int P_{\tilde{Z}_{-2}, C_{h,-1}}(d \psi) e^{-\tilde{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right)+\mathcal{B}^{(-1)}\left(\sqrt{Z_{-1}} \psi, \phi, J\right)} \\
\tilde{Z}_{-2}(\mathbf{k})=Z_{-1}\left[1+\chi_{h,-1}(\mathbf{k}) \zeta_{-1}\right], \quad Z_{-2}=Z_{-1}\left[1+\zeta_{-1}\right]
\end{array}
$$

We now renormalize $P_{Z_{-1}, c_{h,-1}}(d \psi)$, by adding to it part of the quadratic part of $\mathcal{L} V^{(-1)}$:

$$
\begin{array}{r}
\int P_{Z_{-1}, C_{h,-1}}(d \psi) e^{-\mathcal{V}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right)+\mathcal{B}^{(-1)}\left(\sqrt{Z_{-1}} \psi, \phi, J\right)}= \\
e^{-L \beta t_{-1}} \int P_{\tilde{Z}_{-2}, C_{h,-1}}(d \psi) e^{-\tilde{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right)+\mathcal{B}^{(-1)}\left(\sqrt{Z_{-1}} \psi, \phi, J\right)} \\
\tilde{Z}_{-2}(\mathbf{k})=Z_{-1}\left[1+\chi_{h,-1}(\mathbf{k}) \zeta_{-1}\right], \quad Z_{-2}=Z_{-1}\left[1+\zeta_{-1}\right] \\
\tilde{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right)=\mathcal{V}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right)-\zeta_{-1} Z_{-1} F_{\zeta}^{[h,-1]}
\end{array}
$$

We now renormalize $P_{Z_{-1}, c_{h,-1}}(d \psi)$, by adding to it part of the quadratic part of $\mathcal{L} V^{(-1)}$:

$$
\begin{array}{r}
\int P_{Z_{-1}, C_{h,-1}}(d \psi) e^{-\mathcal{V}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right)+\mathcal{B}^{(-1)}\left(\sqrt{Z_{-1}} \psi, \phi, J\right)}= \\
e^{-L \beta t_{-1}} \int P_{\tilde{Z}_{-2}, C_{h,-1}}(d \psi) e^{-\tilde{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right)+\mathcal{B}^{(-1)}\left(\sqrt{Z_{-1}} \psi, \phi, J\right)} \\
\tilde{Z}_{-2}(\mathbf{k})=Z_{-1}\left[1+\chi_{h,-1}(\mathbf{k}) \zeta_{-1}\right], \quad Z_{-2}=Z_{-1}\left[1+\zeta_{-1}\right] \\
\tilde{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right)=\mathcal{V}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right)-\zeta_{-1} Z_{-1} F_{\zeta}^{[h,-1]}
\end{array}
$$

The factor $\exp \left(-L \beta t_{j}\right)$ in takes into account the different normalization of the two functional integrals.

We now rescale the field so that

$$
\begin{aligned}
\tilde{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right) & =\hat{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-2}} \psi\right) \\
\mathcal{B}^{(-1)}\left(\sqrt{Z_{-1}} \psi, \phi, J\right) & =\hat{\mathcal{B}}^{(-1)}\left(\sqrt{Z_{-2}} \psi, \phi, J\right)
\end{aligned}
$$

We now rescale the field so that

$$
\begin{gathered}
\tilde{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right)=\hat{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-2}} \psi\right) \\
\mathcal{B}^{(-1)}\left(\sqrt{Z_{-1}} \psi, \phi, J\right)=\hat{\mathcal{B}}^{(-1)}\left(\sqrt{Z_{-2}} \psi, \phi, J\right) \\
\mathcal{L} \hat{\mathcal{V}}^{(-1)}(\psi)=\lambda_{-1} F_{\lambda}(\psi), \quad \lambda_{-1}=\left(\frac{Z_{-1}}{Z_{-2}}\right)^{2} I_{-1}
\end{gathered}
$$

We now rescale the field so that

$$
\begin{gathered}
\tilde{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right)=\hat{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-2}} \psi\right) \\
\mathcal{B}^{(-1)}\left(\sqrt{Z_{-1}} \psi, \phi, J\right)=\hat{\mathcal{B}}^{(-1)}\left(\sqrt{Z_{-2}} \psi, \phi, J\right) \\
\mathcal{L}^{(-1)}(\psi)=\lambda_{-1} F_{\lambda}(\psi), \quad \lambda_{-1}=\left(\frac{Z_{-1}}{Z_{-2}}\right)^{2} I_{-1} \\
\int P_{\tilde{Z}_{-2}, C_{h,-1}}(d \psi) F(\psi)=\int P_{\tilde{Z}_{-2}, C_{h,-2}}(d \psi) \int P_{Z_{-2}, \tilde{f}_{-1}-1}\left(d \psi_{0}\right) F\left(\psi+\psi_{0}\right)
\end{gathered}
$$

We now rescale the field so that

$$
\begin{gathered}
\tilde{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-1}} \psi\right)=\hat{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-2}} \psi\right) \\
\mathcal{B}^{(-1)}\left(\sqrt{Z_{-1}} \psi, \phi, J\right)=\hat{\mathcal{B}}^{(-1)}\left(\sqrt{Z_{-2}} \psi, \phi, J\right) \\
\mathcal{L}^{(-1)}(\psi)=\lambda_{-1} F_{\lambda}(\psi), \quad \lambda_{-1}=\left(\frac{Z_{-1}}{Z_{-2}}\right)^{2} I_{-1} \\
\int P_{\tilde{Z}_{-2}, C_{h,-1}}(d \psi) F(\psi)=\int P_{\tilde{Z}_{-2}, C_{h,-2}}(d \psi) \int P_{Z_{-2}, \tilde{H}_{-1}^{-1}}\left(d \psi_{0}\right) F\left(\psi+\psi_{0}\right)
\end{gathered}
$$

$P_{Z_{-2}, \tau_{-1}^{-1}}^{-1}\left(d \psi_{0}\right)$ is the integration withpropagator

$$
\hat{g}_{\omega}^{(-1)}(\mathbf{k})=\frac{1}{Z_{-2}} \frac{\tilde{f}_{-1}(\mathbf{k})}{D_{\omega}(\mathbf{k})}, \quad \tilde{f}_{j}(\mathbf{k})=f_{j}(\mathbf{k}) \frac{Z_{j-1}}{\tilde{Z}_{j-1}(\mathbf{k})}
$$

$$
\begin{aligned}
& \int P_{Z_{-2}, \tilde{f}_{-1}^{-1}}\left(d \psi_{0}\right) e^{-\hat{\mathcal{V}}^{(-1)}}\left(\sqrt{Z_{-2}}\left[\psi+\psi_{0}\right]\right)+\hat{\mathcal{B}}^{(-1)}\left(\sqrt{Z_{-2}}\left[\psi+\psi_{0}\right], \phi, J\right) \\
& \equiv e^{-L \beta \tilde{E}_{-1}-\mathcal{V}^{(-2)}}\left(\sqrt{Z_{-2}} \psi\right)+\mathcal{B}^{(-2)}\left(\sqrt{Z_{-2}} \psi, \phi, J\right)
\end{aligned}
$$

$$
\begin{aligned}
& \int P_{Z_{-2}, \tilde{f}_{-1}^{-1}}\left(d \psi_{0}\right) e^{-\hat{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-2}}\left[\psi+\psi_{0}\right]\right)+\hat{\mathcal{B}}^{(-1)}\left(\sqrt{Z_{-2}}\left[\psi+\psi_{0}\right], \phi, J\right)} \\
& \equiv e^{-L \beta \tilde{E}_{-1}-\mathcal{V}^{(-2)}\left(\sqrt{Z_{-2}} \psi\right)+\mathcal{B}^{(-2)}\left(\sqrt{Z_{-2}} \psi, \phi, J\right)}
\end{aligned}
$$

Hence we get the effective potential on scale -2 and $E_{-2}=E_{-1}+t_{-1}+\tilde{E}_{-1}$.

$$
\begin{aligned}
& \int P_{Z_{-2}, \tilde{f}_{-1}^{-1}}\left(d \psi_{0}\right) e^{-\hat{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-2}}\left[\psi+\psi_{0}\right]\right)+\hat{\mathcal{B}}^{(-1)}\left(\sqrt{Z_{-2}}\left[\psi+\psi_{0}\right], \phi, J\right)} \\
& \equiv e^{-L \beta \tilde{E}_{-1}-\mathcal{V}^{(-2)}\left(\sqrt{Z_{-2}} \psi\right)+\mathcal{B}^{(-2)}\left(\sqrt{Z_{-2}} \psi, \phi, J\right)}
\end{aligned}
$$

Hence we get the effective potential on scale -2 and $E_{-2}=E_{-1}+t_{-1}+\tilde{E}_{-1}$.

The previous procedure can be iterated and we get similar expressions with j and $j-1$ in place of -1 and -2 .

$$
\begin{aligned}
& \int P_{Z_{-2}, \tilde{f}_{-1}^{-1}}\left(d \psi_{0}\right) e^{-\hat{\mathcal{V}}^{(-1)}\left(\sqrt{Z_{-2}}\left[\psi+\psi_{0}\right]\right)+\hat{\mathcal{B}}^{(-1)}\left(\sqrt{Z_{-2}}\left[\psi+\psi_{0}\right], \phi, J\right)} \\
& \equiv e^{-L \beta \tilde{E}_{-1}-\mathcal{V}^{(-2)}\left(\sqrt{Z_{-2}} \psi\right)+\mathcal{B}^{(-2)}\left(\sqrt{Z_{-2}} \psi, \phi, J\right)}
\end{aligned}
$$

Hence we get the effective potential on scale -2 and $E_{-2}=E_{-1}+t_{-1}+\tilde{E}_{-1}$.

The previous procedure can be iterated and we get similar expressions with j and $j-1$ in place of -1 and -2 .

Note that the propagator is independent of the infrared cutoff for $j>h$ and $f_{j}(\mathbf{k}) \leq f_{j}(\mathbf{k})\left(1+\zeta_{j}\right)$, so that $\hat{g}^{(i)}$ satisfies the same bound as $g^{(i)}$.

Outline

Introduction

Abstract
References
The Tomonaga model with infrared cutoff
The model
The RG approach
The Beta function
The multiscale expansion
Existence of the infrared limit
The Dyson equations
The Green function with 4 external legs
Gauge invariance
The first Ward identity
The second Ward identity
The second correction identity

The flow of the running coupling constants and the renormalization constants

Let $\varepsilon_{j}=\max _{i \geq j}\left|\lambda_{i}\right|, \quad \lambda_{0}=\lambda$; then

The flow of the running coupling constants and the renormalization constants

$$
\begin{gathered}
\text { Let } \varepsilon_{j}=\max _{i \geq j}\left|\lambda_{i}\right|, \quad \lambda_{0}=\lambda ; \quad \text { then } \\
\lambda_{j-1}=\lambda_{j}+\beta_{\lambda}\left(\lambda_{j}, \delta_{j}, \ldots, \lambda_{0}, \delta_{0}\right)=\lambda_{j}+O\left(\varepsilon_{j}^{2}\right) \\
\frac{Z_{j-1}}{Z_{j}}=1+\zeta_{j}=1+b \lambda_{j}^{2}+O\left(\varepsilon_{j}^{3}\right)
\end{gathered}
$$

The flow of the running coupling constants and the renormalization constants

$$
\begin{gathered}
\text { Let } \quad \varepsilon_{j}=\max _{i \geq j}\left|\lambda_{i}\right|, \quad \lambda_{0}=\lambda ; \quad \text { then } \\
\lambda_{j-1}=\lambda_{j}+\beta_{\lambda}\left(\lambda_{j}, \delta_{j}, \ldots, \lambda_{0}, \delta_{0}\right)=\lambda_{j}+O\left(\varepsilon_{j}^{2}\right) \\
\frac{Z_{j-1}}{Z_{j}}=1+\zeta_{j}=1+b \lambda_{j}^{2}+O\left(\varepsilon_{j}^{3}\right)
\end{gathered}
$$

The main difficulty is to prove that ε_{j} stays bounded and of order λ, uniformly in $j \geq h$ and in the infrared cutoff h.

Outline

Introduction

Abstract
References
The Tomonaga model with infrared cutoff
The model
The RG approach
The Beta function
The multiscale expansion
Existence of the infrared limit
The Dyson equations
The Green function with 4 external legs
Gauge invariance
The first Ward identity
The second Ward identity
The second correction identity

The tree expansion

At the end of the integration procedure we get

$$
\mathcal{W}(\varphi, J)=-L \beta E_{L, \beta}+\sum_{m^{\phi}+n^{J} \geq 1} S_{2 m^{\phi}, n^{J}}^{(h)}(\phi, J)
$$

We can expand the functional $S_{2 m^{\phi}, n^{J}}^{(h)}(\phi, J)$, the effective potential and the beta function as a sum of terms. Each term is associated with a tree, which describes how this term is produced along the iterative integration procedure.

The tree expansion

At the end of the integration procedure we get

$$
\mathcal{W}(\varphi, J)=-L \beta E_{L, \beta}+\sum_{m^{\phi}+n^{J} \geq 1} S_{2 m^{\phi}, n^{J}}^{(h)}(\phi, J)
$$

We can expand the functional $S_{2 m^{\phi}, n^{J}}^{(h)}(\phi, J)$, the effective potential and the beta function as a sum of terms. Each term is associated with a tree, which describes how this term is produced along the iterative integration procedure.
Let us consider, in particular, the effective potential on scale j. We get:

$$
\begin{gathered}
\mathcal{V}^{(j)}\left(\sqrt{Z_{j}} \psi\right)+L \beta \tilde{E}_{j+1}= \\
\sum_{n=1}^{\infty} \sum_{\tau \in \mathcal{T}_{j, n}} \sum_{\mathbf{P} \in \mathcal{P}_{\tau}} \sqrt{Z_{j}}{ }^{\left|P_{v_{0}}\right|} \int d \mathbf{x}_{v_{0}} \tilde{\psi}\left(P_{v_{0}}\right) K_{\tau, \mathbf{P}}^{(j+1)}\left(\mathbf{x}_{v_{0}}\right) \\
\tilde{\psi}\left(P_{v}\right)=\prod_{f \in P_{v}} \psi_{\mathbf{x}(f), \omega(f)}^{\sigma(f)}
\end{gathered}
$$

$K_{\tau, \mathrm{P}}^{(j+1)}\left(\mathbf{x}_{V_{0}}\right)$ is a suitable function, which is obtained by summing the values of all the Feynmann graphs compatible with \mathbf{P}, and applying iteratively in the vertices of the tree, different from the endpoints and v_{0}, the \mathcal{R}-operation, starting from the vertices with higher scale.

The main bound

In order to control, uniformly in L and β, the various sums in the tree expansion, one has to exploit in a careful way the \mathcal{R} operation acting on the vertices of the tree.

The main bound

In order to control, uniformly in L and β, the various sums in the tree expansion, one has to exploit in a careful way the \mathcal{R} operation acting on the vertices of the tree.
In absence of the \mathcal{R} operation, one gets the dimensional bound (here it is essential that the particles are fermions):

$$
\begin{aligned}
& \int d \mathbf{x}\left|K_{\tau, \mathbf{P}}^{(j+1)}(\mathbf{x})\right| \leq L \beta\left(C_{j+1}\right)^{n} \gamma^{-j\left(-2+\left|P_{v_{0}}\right| / 2\right)} . \\
& \prod_{\text {v not e.p }}\left(\frac{Z_{h_{v}}}{Z_{h_{v}-1}}\right)^{\frac{\left|P p_{v}\right|}{2}} \gamma^{-\left(-2+\frac{|P v|}{2}\right)}
\end{aligned}
$$

The main bound

In order to control, uniformly in L and β, the various sums in the tree expansion, one has to exploit in a careful way the \mathcal{R} operation acting on the vertices of the tree.
In absence of the \mathcal{R} operation, one gets the dimensional bound (here it is essential that the particles are fermions):

$$
\begin{aligned}
& \int d \mathbf{x}\left|K_{\tau, \mathbf{P}}^{(j+1)}(\mathbf{x})\right| \leq L \beta\left(C_{j+1}\right)^{n} \gamma^{-j\left(-2+\left|P_{v_{0}}\right| / 2\right)} . \\
& \prod_{\text {v not e.p }}\left(\frac{Z_{h_{v}}}{Z_{h_{v}-1}}\right)^{\frac{\left|P p_{v}\right|}{2}} \gamma^{-\left(-2+\frac{|P v|}{2}\right)}
\end{aligned}
$$

This bound allows us to associate a factor $\gamma^{2-\left|P_{v}\right| / 2}$ with any trivial or non trivial vertex of the tree. This would allow us to control the sums over the scale labels and \mathcal{P}_{τ}, provided $\left|P_{V}\right|$ were larger than 4 in all vertices, which is however not true.

The effect of the \mathcal{R} operation is to improve the bound, so that there is a factor less than 1 associated even to the vertices where $\left|P_{v}\right|$ is equal to 2 or 4.

The effect of the \mathcal{R} operation is to improve the bound, so that there is a factor less than 1 associated even to the vertices where $\left|P_{v}\right|$ is equal to 2 or 4.
Roughly, this follows from the fact that, in the Taylor expansion of the external ψ field in a vertex of scale h_{v}, each derivative includes in the bound the difference between two points of the corresponding cluster, hence a bad factor $\gamma^{-h_{v}}$, while the field derivative produces a good factor $\gamma^{h_{v^{\prime}}}$ in the vertex v^{\prime} where it is contracted.

The effect of the \mathcal{R} operation is to improve the bound, so that there is a factor less than 1 associated even to the vertices where $\left|P_{v}\right|$ is equal to 2 or 4.

Roughly, this follows from the fact that, in the Taylor expansion of the external ψ field in a vertex of scale h_{v}, each derivative includes in the bound the difference between two points of the corresponding cluster, hence a bad factor $\gamma^{-h_{v}}$, while the field derivative produces a good factor $\gamma^{h_{v^{\prime}}}$ in the vertex v^{\prime} where it is contracted.

This modifies the previous bound, by adding a factor γ^{-1} for each vertex belonging to the path joining v with v^{\prime} along the tree.

The effect of the \mathcal{R} operation is to improve the bound, so that there is a factor less than 1 associated even to the vertices where $\left|P_{v}\right|$ is equal to 2 or 4.
Roughly, this follows from the fact that, in the Taylor expansion of the external ψ field in a vertex of scale h_{v}, each derivative includes in the bound the difference between two points of the corresponding cluster, hence a bad factor $\gamma^{-h_{v}}$, while the field derivative produces a good factor $\gamma^{h_{v^{\prime}}}$ in the vertex v^{\prime} where it is contracted.

This modifies the previous bound, by adding a factor γ^{-1} for each vertex belonging to the path joining v with v^{\prime} along the tree.
It is easy to see that, in the new bound, we can associate to any vertex a factor $\gamma^{d_{v}}$, with $d_{v}=2-\left|P_{v}\right| / 2-r_{v}<0$.

Outline

Introduction

Abstract
References
The Tomonaga model with infrared cutoff
The model
The RG approach
The Beta function
The multiscale expansion
Existence of the infrared limit
The Dyson equations
The Green function with 4 external legs
Gauge invariance
The first Ward identity
The second Ward identity
The second correction identity

Existence of the infrared limit

Let us add a superscript ${ }^{(h)}$ to the running couplings and the renormalization constants, to stress their dependence on the infrared cutoff end put $Z_{j}^{(1, h)}=Z_{j}^{(h)}$.

Existence of the infrared limit

Let us add a superscript ${ }^{(h)}$ to the running couplings and the renormalization constants, to stress their dependence on the infrared cutoff end put $Z_{j}^{(1, h)}=Z_{j}^{(h)}$.
If $h^{\prime}<h$,

$$
\lambda_{j}^{\left(h^{\prime}\right)}=\lambda_{j}^{(h)}, \quad Z_{j}^{\left(i, h^{\prime}\right)}=Z_{j}^{(i, h)}, \quad j=0, \ldots, h+1
$$

Existence of the infrared limit

Let us add a superscript ${ }^{(h)}$ to the running couplings and the renormalization constants, to stress their dependence on the infrared cutoff end put $Z_{j}^{(1, h)}=Z_{j}^{(h)}$.
If $h^{\prime}<h$,

$$
\begin{aligned}
& \lambda_{j}^{\left(h^{\prime}\right)}=\lambda_{j}^{(h)}, \quad z_{j}^{\left(i, h^{\prime}\right)}=Z_{j}^{(i, h)}, \quad j=0, \ldots, h+1 \\
& \lambda_{h}^{\left(h^{\prime}\right)}=\lambda_{h}^{(h)}+O\left(\varepsilon_{h}^{2}\right), \quad Z_{h}^{\left(i, h^{\prime}\right)} / Z_{h}^{(i, h)}=1+O\left(\varepsilon_{h}^{2}\right)
\end{aligned}
$$

Existence of the infrared limit

Let us add a superscript ${ }^{(h)}$ to the running couplings and the renormalization constants, to stress their dependence on the infrared cutoff end put $Z_{j}^{(1, h)}=Z_{j}^{(h)}$.
If $h^{\prime}<h$,

$$
\begin{aligned}
& \lambda_{j}^{\left(h^{\prime}\right)}=\lambda_{j}^{(h)}, \quad Z_{j}^{\left(i, h^{\prime}\right)}=Z_{j}^{(i, h)}, \quad j=0, \ldots, h+1 \\
& \lambda_{h}^{\left(h^{\prime}\right)}=\lambda_{h}^{(h)}+O\left(\varepsilon_{h}^{2}\right), \quad Z_{h}^{\left(i, h^{\prime}\right)} / Z_{h}^{(i, h)}=1+O\left(\varepsilon_{h}^{2}\right)
\end{aligned}
$$

If ε_{h} stays small for $h \rightarrow-\infty$, one can remove the infrared cutoff and show that

$$
\lambda_{j} \underset{j \rightarrow-\infty}{\longrightarrow} \lambda_{-\infty}(\lambda), \quad \frac{Z_{j-1}^{(i)}}{Z_{j}^{(i)}} \underset{j \rightarrow-\infty}{\longrightarrow} \eta_{i}\left(\lambda_{-\infty}\right)
$$

Existence of the infrared limit

Let us add a superscript ${ }^{(h)}$ to the running couplings and the renormalization constants, to stress their dependence on the infrared cutoff end put $Z_{j}^{(1, h)}=Z_{j}^{(h)}$. If $h^{\prime}<h$,

$$
\begin{aligned}
& \lambda_{j}^{\left(h^{\prime}\right)}=\lambda_{j}^{(h)}, \quad Z_{j}^{\left(i, h^{\prime}\right)}=Z_{j}^{(i, h)}, \quad j=0, \ldots, h+1 \\
& \lambda_{h}^{\left(h^{\prime}\right)}=\lambda_{h}^{(h)}+O\left(\varepsilon_{h}^{2}\right), \quad Z_{h}^{\left(i, h^{\prime}\right)} / Z_{h}^{(i, h)}=1+O\left(\varepsilon_{h}^{2}\right)
\end{aligned}
$$

If ε_{h} stays small for $h \rightarrow-\infty$, one can remove the infrared cutoff and show that

$$
\lambda_{j} \xrightarrow[j \rightarrow-\infty]{\longrightarrow} \lambda_{-\infty}(\lambda), \quad \frac{Z_{j-1}^{(i)}}{Z_{j}^{(i)}} \underset{j \rightarrow-\infty}{\longrightarrow} \eta_{i}\left(\lambda_{-\infty}\right)
$$

$\lambda_{-\infty}(\lambda)$ and $\eta_{i}\left(\lambda_{-\infty}\right)$ are analytic functions.

Outline

Introduction

Abstract
References
The Tomonaga model with infrared cutoff
The model
The RG approach
The Beta function
The multiscale expansion
Existence of the infrared limit
The Dyson equations
The Green function with 4 external legs
Gauge invariance
The first Ward identity
The second Ward identity
The second correction identity

The Green function with 4 external legs

$$
\begin{aligned}
-\hat{G}_{+}^{4}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \mathbf{k}_{4}\right) & =\lambda \hat{g}_{-}\left(\mathbf{k}_{4}\right)\left[\hat{G}_{-}^{2}\left(\mathbf{k}_{3}\right) \hat{G}_{+}^{2,1}\left(\mathbf{k}_{1}-\mathbf{k}_{2}, \mathbf{k}_{1}, \mathbf{k}_{2}\right)+\right. \\
& \left.+\frac{1}{L \beta} \sum_{\mathbf{p}} G_{+}^{4,1}\left(\mathbf{p} ; \mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \mathbf{k}_{4}-\mathbf{p}\right)\right]
\end{aligned}
$$

The RG analysis allows to get rigorously dimensional bounds on the correlation functions Fourier transforms.

The RG analysis allows to get rigorously dimensional bounds on the correlation functions Fourier transforms. In particular, if we fix the external momenta in the Dyson equation so that

$$
\mathbf{k}_{1}=\mathbf{k}_{4}=-\mathbf{k}_{2}=-\mathbf{k}_{3}=\overline{\mathbf{k}}, \quad|\overline{\mathbf{k}}|=\gamma^{h}
$$

and ε_{h} is small enough, we get

The RG analysis allows to get rigorously dimensional bounds on the correlation functions Fourier transforms. In particular, if we fix the external momenta in the Dyson equation so that

$$
\mathbf{k}_{1}=\mathbf{k}_{4}=-\mathbf{k}_{2}=-\mathbf{k}_{3}=\overline{\mathbf{k}}, \quad|\overline{\mathbf{k}}|=\gamma^{h}
$$

and ε_{h} is small enough, we get

$$
\begin{gathered}
\hat{G}_{\omega}^{2}(\overline{\mathbf{k}})=\frac{1}{Z_{h}^{(1)} D_{\omega}(\overline{\mathbf{k}})}\left[1+O\left(\varepsilon_{h}^{2}\right)\right], \quad D_{\omega}(\mathbf{k})=-i k_{0}+\omega k \\
\hat{G}_{\omega}^{2,1}(2 \overline{\mathbf{k}}, \overline{\mathbf{k}},-\overline{\mathbf{k}})=-\frac{Z_{h}^{(2)}}{\left(Z_{h}^{(1)}\right)^{2} D_{\omega}(\overline{\mathbf{k}})^{2}}\left[1+O\left(\varepsilon_{h}^{2}\right)\right] \\
\hat{G}_{+}^{4}(\overline{\mathbf{k}},-\overline{\mathbf{k}},-\overline{\mathbf{k}}, \overline{\mathbf{k}})=\frac{1}{\left(Z_{h}^{(1)}\right)^{2}|\overline{\mathbf{k}}|^{4}}\left[-\lambda_{h}+O\left(\varepsilon_{h}^{2}\right)\right]
\end{gathered}
$$

管

$$
\text { I.h.s. }=\frac{1}{\left(Z_{h}^{(1)}\right)^{2}|\overline{\mathbf{k}}|^{4}}\left[\lambda_{h}+O\left(\varepsilon_{h}^{2}\right)\right]
$$

$$
\text { I.h.s. }=\frac{1}{\left(Z_{h}^{(1)}\right)^{2}|\overline{\mathbf{k}}|^{4}}\left[\lambda_{h}+O\left(\varepsilon_{h}^{2}\right)\right]
$$

first term in the r.h.s. $=\frac{Z_{h}^{(2)}}{\left(Z_{h}^{(1)}\right)^{3}|\overline{\mathbf{k}}|^{4}} \lambda\left[1+O\left(\varepsilon_{h}^{2}\right)\right]$

$$
\text { I.h.s. }=\frac{1}{\left(Z_{h}^{(1)}\right)^{2}|\overline{\mathbf{k}}|^{4}}\left[\lambda_{h}+O\left(\varepsilon_{h}^{2}\right)\right]
$$

first term in the r.h.s. $=\frac{Z_{h}^{(2)}}{\left(Z_{h}^{(1)}\right)^{3}|\overline{\mathbf{k}}|^{4}} \lambda\left[1+O\left(\varepsilon_{h}^{2}\right)\right]$
By local gauge invariance $\quad \frac{Z_{h}^{(2)}}{Z_{h}^{(1)}}=1+O\left(\varepsilon_{h}\right)$

Were we able to bound the second term in the r.h.s. as

$$
c \frac{\varepsilon_{h}^{2}}{\left(Z_{h}^{(1)}\right)^{2}|\overline{\mathbf{k}}|^{4}}
$$

then, by a simple iterative argument, we could prove that, if λ is small enough,

$$
\left|\lambda_{j}^{(h)}\right| \leq 2|\lambda|, \quad \forall h \text { and } j \geq h
$$

implying that the Tomonaga model is well defined.

Were we able to bound the second term in the r.h.s. as

$$
C \frac{\varepsilon_{h}^{2}}{\left(Z_{h}^{(1)}\right)^{2}|\overline{\mathbf{k}}|^{4}}
$$

then, by a simple iterative argument, we could prove that, if λ is small enough,

$$
\left|\lambda_{j}^{(h)}\right| \leq 2|\lambda|, \quad \forall h \text { and } j \geq h
$$

implying that the Tomonaga model is well defined.
However, the RG analysis only allows us to bound such term as

$$
C \frac{\varepsilon_{h}^{2}}{\left(Z_{h}^{(1)}\right)^{2}|\overline{\mathbf{k}}|^{4}}\left[\frac{\gamma^{C \varepsilon_{n}|h|}-1}{\varepsilon_{h}}\right]
$$

which is of course not sufficient.

The natural guess is that the origin of the problem is in the fact that one is not taking into account some crucial cancellations related with the gauge invariance.

The natural guess is that the origin of the problem is in the fact that one is not taking into account some crucial cancellations related with the gauge invariance.
Hence, inspired by the analysis in the physical literature (W. Metzner and C. Di Castro, PRB 47, 1993), we rewrite $\hat{G}_{w i}^{4,1}$ in terms of \hat{G}_{+}^{4} by suitable Ward identities, that is the identities obtained by applying the chiral Gauge transformation

$$
\psi_{\mathbf{x},+}^{ \pm} \rightarrow e^{ \pm i \alpha_{\mathbf{x}}} \psi_{\mathbf{x},+}^{ \pm}, \quad \psi_{\mathbf{x},-}^{ \pm} \rightarrow \psi_{\mathbf{x},-}^{ \pm}
$$

in the generating functional.

The natural guess is that the origin of the problem is in the fact that one is not taking into account some crucial cancellations related with the gauge invariance.

Hence, inspired by the analysis in the physical literature (W. Metzner and C. Di Castro, PRB 47, 1993), we rewrite $\hat{G}_{\omega}^{4,1}$ in terms of \hat{G}_{+}^{4} by suitable Ward identities, that is the identities obtained by applying the chiral Gauge transformation

$$
\psi_{\mathbf{x},+}^{ \pm} \rightarrow e^{ \pm i \alpha_{\mathbf{x}}} \psi_{\mathbf{x},+}^{ \pm}, \quad \psi_{\mathbf{x},-}^{ \pm} \rightarrow \psi_{\mathbf{x},-}^{ \pm}
$$

in the generating functional.
As I will discuss, this is not enough, because the corrections to the formal WI related with the cutoffs satisfy bounds of the same type of the previous one.

The natural guess is that the origin of the problem is in the fact that one is not taking into account some crucial cancellations related with the gauge invariance.

Hence, inspired by the analysis in the physical literature (W. Metzner and C. Di Castro, PRB 47, 1993), we rewrite $\hat{G}_{\omega}^{4}, 1$ in terms of \hat{G}_{+}^{4} by suitable Ward identities, that is the identities obtained by applying the chiral Gauge transformation

$$
\psi_{\mathbf{x},+}^{ \pm} \rightarrow e^{ \pm i \alpha_{\mathbf{x}}} \psi_{\mathbf{x},+}^{ \pm}, \quad \psi_{\mathbf{x},-}^{ \pm} \rightarrow \psi_{\mathbf{x},-}^{ \pm}
$$

in the generating functional.
As I will discuss, this is not enough, because the corrections to the formal WI related with the cutoffs satisfy bounds of the same type of the previous one.

The problem is finally solved by using other identities, which we call correction identities.

Outline

Introduction

Abstract
References
The Tomonaga model with infrared cutoff
The model
The RG approach
The Beta function
The multiscale expansion
Existence of the infrared limit
The Dyson equations
The Green function with 4 external legs
Gauge invariance
The first Ward identity
The second Ward identity
The second correction identity

The first Ward identity

$$
D_{+}(\mathbf{p}) C_{\widehat{G}_{+}^{2,1}}^{\mathbf{q}}(\mathbf{p})=-i p_{0}+\omega p, \quad \int d \mathbf{k} C_{+}(\mathbf{k}, \mathbf{k}-\mathbf{p}) \psi_{\mathbf{k},+}^{+} \psi_{\mathbf{k}-\mathbf{p},+}^{-}, \hat{G}_{+}^{2}\left(\mathbf{k}^{+}, \mathbf{k}^{-}\right)=\left[C_{n, 0}\left(\mathbf{k}^{-}\right)-1\right] D_{\omega}\left(\mathbf{k}^{-}\right)-\left[C_{n, 0}\left(\mathbf{k}^{+}\right)-1\right] D_{\omega}\left(\mathbf{k}^{+}\right)
$$

At graph level, the Ward identities follow from the trivial identity

$$
\frac{1}{D_{\omega}(\mathbf{k})}-\frac{1}{D_{\omega}(\mathbf{k}+\mathbf{p})}=\frac{D_{\omega}(\mathbf{p})}{D_{\omega}(\mathbf{k}) D_{\omega}(\mathbf{k}+\mathbf{p})}
$$

At graph level, the Ward identities follow from the trivial identity

$$
\frac{1}{D_{\omega}(\mathbf{k})}-\frac{1}{D_{\omega}(\mathbf{k}+\mathbf{p})}=\frac{D_{\omega}(\mathbf{p})}{D_{\omega}(\mathbf{k}) D_{\omega}(\mathbf{k}+\mathbf{p})}
$$

One could guess that the correction term $\Delta_{+}^{2,1}$ is negligible. However, this is not true, but we have the first correction identity

At graph level, the Ward identities follow from the trivial identity

$$
\frac{1}{D_{\omega}(\mathbf{k})}-\frac{1}{D_{\omega}(\mathbf{k}+\mathbf{p})}=\frac{D_{\omega}(\mathbf{p})}{D_{\omega}(\mathbf{k}) D_{\omega}(\mathbf{k}+\mathbf{p})}
$$

One could guess that the correction term $\Delta_{+}^{2,1}$ is negligible. However, this is not true, but we have the first correction identity

The filled point represents

$$
\int d \mathbf{k} C_{+}(\mathbf{k}, \mathbf{k}-\mathbf{p}) \psi_{\mathbf{k},+}^{+} \psi_{\mathbf{k}-\mathbf{p},+}^{-}-\sum_{\omega} \nu_{\omega} D_{\omega}(\mathbf{p}) \int d \mathbf{k} \psi_{\mathbf{k}, \omega}^{+} \psi_{\mathbf{k}-\mathbf{p}, \omega}^{-}
$$

- ν_{+}, ν_{-}are $O(\lambda)$ and weakly dependent on h.
- the term $H_{+}^{2,1}$ is indeed negligible, in the sense that, if we can make the limit $h \rightarrow-\infty$, its contribution goes to 0 as the external momenta go to 0 (of course staying much larger than γ^{h}).
- ν_{+}, ν_{-}are $O(\lambda)$ and weakly dependent on h.
- the term $H_{+}^{2,1}$ is indeed negligible, in the sense that, if we can make the limit $h \rightarrow-\infty$, its contribution goes to 0 as the external momenta go to 0 (of course staying much larger than γ^{h}).
If we insert the correction identity in the WI, we get

$$
\begin{gathered}
\left(1-\nu_{+}\right) D_{+}(\mathbf{p}) \hat{G}_{+}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})-\nu_{-} D_{-}(\mathbf{p}) \hat{G}_{-}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})= \\
=\hat{G}_{+}^{2}(\mathbf{q})-\hat{G}_{+}^{2}(\mathbf{k})+\hat{H}_{+}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})
\end{gathered}
$$

- ν_{+}, ν_{-}are $O(\lambda)$ and weakly dependent on h.
- the term $H_{+}^{2,1}$ is indeed negligible, in the sense that, if we can make the limit $h \rightarrow-\infty$, its contribution goes to 0 as the external momenta go to 0 (of course staying much larger than γ^{h}).
If we insert the correction identity in the WI, we get

$$
\begin{gathered}
\left(1-\nu_{+}\right) D_{+}(\mathbf{p}) \hat{G}_{+}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})-\nu_{-} D_{-}(\mathbf{p}) \hat{G}_{-}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})= \\
=\hat{G}_{+}^{2}(\mathbf{q})-\hat{G}_{+}^{2}(\mathbf{k})+\hat{H}_{+}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})
\end{gathered}
$$

The presence of $G_{+}^{2,1}$ in the correction identity is not a problem. In fact, this function satisfies another Ward identity and a corresponding correction identity, involving the same constants ν_{+}, ν_{-}, and we get
$\left(1-\nu_{+}\right) D_{-}(\mathbf{p}) \hat{G}_{-}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})-\nu_{-} D_{+}(\mathbf{p}) \hat{G}_{+}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})=\hat{H}_{-}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})$

- ν_{+}, ν_{-}are $O(\lambda)$ and weakly dependent on h.
- the term $H_{+}^{2,1}$ is indeed negligible, in the sense that, if we can make the limit $h \rightarrow-\infty$, its contribution goes to 0 as the external momenta go to 0 (of course staying much larger than γ^{h}).
If we insert the correction identity in the WI, we get

$$
\begin{gathered}
\left(1-\nu_{+}\right) D_{+}(\mathbf{p}) \hat{G}_{+}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})-\nu_{-} D_{-}(\mathbf{p}) \hat{G}_{-}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})= \\
=\hat{G}_{+}^{2}(\mathbf{q})-\hat{G}_{+}^{2}(\mathbf{k})+\hat{H}_{+}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})
\end{gathered}
$$

The presence of $G_{+}^{2,1}$ in the correction identity is not a problem. In fact, this function satisfies another Ward identity and a corresponding correction identity, involving the same constants ν_{+}, ν_{-}, and we get
$\left(1-\nu_{+}\right) D_{-}(\mathbf{p}) \hat{G}_{-}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})-\nu_{-} D_{+}(\mathbf{p}) \hat{G}_{+}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})=\hat{H}_{-}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})$
Hence, we can represent $\hat{G}_{+}^{2,1}$ as a linear combination of propagators, as in the case of the formal WI, up to negligible terms.

The first WI can be used to prove that

$$
\frac{Z_{h}^{(2)}}{Z_{h}^{(1)}}=1+O\left(\varepsilon_{h}\right)
$$

In order to get this result, we put $\mathbf{k}=-\mathbf{q}=\overline{\mathbf{k}}$, with $|\overline{\mathbf{k}}|=\gamma^{h}$. For these values of the external momenta, $\hat{H}_{-}^{2,1}(\mathbf{p}, \mathbf{k}, \mathbf{q})$ is not negligible, but one can show that

$$
\left|\frac{\hat{\Delta}_{+}^{2,1}(2 \overline{\mathbf{k}}, \overline{\mathbf{k}},-\overline{\mathbf{k}})}{D_{+}(2 \overline{\mathbf{k}})}\right| \leq \mathcal{C}^{-2 h} \varepsilon_{h} \frac{Z_{h}^{(2)}}{\left(Z_{h}^{(1)}\right)^{2}}
$$

Outline

Introduction

Abstract
References
The Tomonaga model with infrared cutoff
The model
The RG approach
The Beta function
The multiscale expansion
Existence of the infrared limit
The Dyson equations
The Green function with 4 external legs
Gauge invariance
The first Ward identity
The second Ward identity
The second correction identity

垔

If one inserts this identity in the Dyson equation, the two terms containing the four point function give the right bound, but the correction term $\Delta_{+}^{4,1} / D_{+}(\mathbf{p})$ has the same bad bound as the original one, so making apparently useless the WI.

If one inserts this identity in the Dyson equation, the two terms containing the four point function give the right bound, but the correction term $\Delta_{+}^{4,1} / D_{+}(\mathbf{p})$ has the same bad bound as the original one, so making apparently useless the WI.

However, there is again a correction identity, that allows us to solve this problem.

Outline

Introduction

Abstract
References
The Tomonaga model with infrared cutoff
The model
The RG approach
The Beta function
The multiscale expansion
Existence of the infrared limit
The Dyson equations
The Green function with 4 external legs
Gauge invariance
The first Ward identity
The second Ward identity
The second correction identity

The second correction identity

皆

The second correction identity

In this case, to show that the contribution of $\hat{H}_{+}^{4,1}$ has the right bound is not so simple, since we need to evaluate it for external momenta of order γ^{h}.

It turns out that we have to evaluate a correlation very similar to the four point function with one of the external vertices substituted with the correction vertex and the free propagator entering this special vertex.

$=$

We can study \tilde{G}_{4} by a multiscale analysis very similar to the one for \hat{G}^{4}.

We can study \tilde{G}_{4} by a multiscale analysis very similar to the one for \hat{G}^{4}.

The presence of a "special" vertex has however the effect that a new running coupling appears, associated with the local part of the terms with four external lines among which one is the dotted line, to which the bare propagator $\hat{g}\left(\mathbf{k}_{4}\right)$ is associated; we will call this new running coupling constant $\tilde{\lambda}_{j}$.

We can study \tilde{G}_{4} by a multiscale analysis very similar to the one for \hat{G}^{4}.

The presence of a "special" vertex has however the effect that a new running coupling appears, associated with the local part of the terms with four external lines among which one is the dotted line, to which the bare propagator $\hat{g}\left(\mathbf{k}_{4}\right)$ is associated; we will call this new running coupling constant $\tilde{\lambda}_{j}$.

It would seem that we have a problem more difficult than our initial one, since we have now to control the flow of two running coupling constants, λ_{j} and $\tilde{\lambda}_{j}$, instead of one.

We can study \tilde{G}_{4} by a multiscale analysis very similar to the one for \hat{G}^{4}.

The presence of a "special" vertex has however the effect that a new running coupling appears, associated with the local part of the terms with four external lines among which one is the dotted line, to which the bare propagator $\hat{g}\left(\mathbf{k}_{4}\right)$ is associated; we will call this new running coupling constant $\tilde{\lambda}_{j}$.

It would seem that we have a problem more difficult than our initial one, since we have now to control the flow of two running coupling constants, λ_{j} and $\tilde{\lambda}_{j}$, instead of one.
However, it turns out that the "counterterms" $\nu_{ \pm}$can be chosen so that λ_{j} and $\tilde{\lambda}_{j}$ are essentially proportional.

We can study \tilde{G}_{4} by a multiscale analysis very similar to the one for \hat{G}^{4}.

The presence of a "special" vertex has however the effect that a new running coupling appears, associated with the local part of the terms with four external lines among which one is the dotted line, to which the bare propagator $\hat{g}\left(\mathbf{k}_{4}\right)$ is associated; we will call this new running coupling constant $\tilde{\lambda}_{j}$.
It would seem that we have a problem more difficult than our initial one, since we have now to control the flow of two running coupling constants, λ_{j} and $\tilde{\lambda}_{j}$, instead of one.
However, it turns out that the "counterterms" $\nu_{ \pm}$can be chosen so that λ_{j} and $\tilde{\lambda}_{j}$ are essentially proportional.
One then gets for \tilde{G}_{4} a bound very similar to the one for \hat{G}_{4}, except that λ_{h} is replaced by $\tilde{\lambda}_{h}$ and there is no wave function renormalization associated to the external line with momentum k_{4}.

We can however identify two class of terms in the expansion of \tilde{G}_{4} and summing them has the effect that also the external line with momentum \mathbf{k}_{4} is dressed by the interaction.

$$
\begin{gathered}
\tilde{\lambda}_{j^{*}} \frac{1}{D_{-}\left(\mathbf{k}_{4}\right)}-\lambda_{j^{*}} \frac{1}{Z_{h} D_{-}\left(\mathbf{k}_{4}\right)}\left[\sum_{j=h+1}^{0} \tilde{z}_{j} z_{j} D_{-}\left(\mathbf{k}_{4}\right)\right] \frac{1}{D_{-}\left(\mathbf{k}_{4}\right)} \\
\left|\tilde{\lambda}_{j}-\alpha \lambda_{j}\right| \leq c \varepsilon_{h} \gamma^{j / 2}, \quad\left|\tilde{z}_{j} Z_{j}-\alpha z_{j} z_{j}\right| \leq c \varepsilon_{h} \gamma^{j / 2}
\end{gathered}
$$

Hence, we get:

$$
\alpha \lambda_{j^{*}} \frac{1}{D_{-}\left(\mathbf{k}_{4}\right)}\left[1-\frac{\sum_{j=h+1}^{0} z_{j} Z_{j}}{Z_{h}}\right]+\frac{O\left(\varepsilon_{h}\right)}{Z_{h} D_{-}\left(\mathbf{k}_{4}\right)}
$$

Hence, we get:

$$
\begin{aligned}
& \alpha \lambda_{j^{*}} \frac{1}{D_{-}\left(\mathbf{k}_{4}\right)}\left[1-\frac{\sum_{j=h+1}^{0} z_{j} Z_{j}}{Z_{h}}\right]+\frac{O\left(\varepsilon_{h}\right)}{Z_{h} D_{-}\left(\mathbf{k}_{4}\right)} \\
& \sum_{j=h+1}^{0} z_{j} Z_{j}=Z_{h}-1 \Rightarrow 1-\frac{\sum_{j=h+1}^{0} z_{j} Z_{j}}{Z_{h}}=\frac{1}{Z_{h}}
\end{aligned}
$$

Hence, we get:

$$
\begin{gathered}
\alpha \lambda_{j^{*}} \frac{1}{D_{-}\left(\mathbf{k}_{4}\right)}\left[1-\frac{\sum_{j=h+1}^{0} z_{j} Z_{j}}{Z_{h}}\right]+\frac{O\left(\varepsilon_{h}\right)}{Z_{h} D_{-}\left(\mathbf{k}_{4}\right)} \\
\sum_{j=h+1}^{0} z_{j} Z_{j}=Z_{h}-1 \Rightarrow 1-\frac{\sum_{j=h+1}^{0} z_{j} Z_{j}}{Z_{h}}=\frac{1}{Z_{h}} \\
\left|\lambda \tilde{G}_{4}\right| \leq C \frac{\varepsilon_{h}^{2}}{\left(Z_{h}^{(1)}\right)^{2}|\overline{\mathbf{k}}|^{4}}
\end{gathered}
$$

Remark - The improvement of the bound is due to the cancellations implied by the inductive hypothesis that λ_{j} does not grow as $j \rightarrow-\infty$. In order to use this property we had to choose $\nu_{ \pm}$so that $\tilde{\lambda}_{j} \simeq \alpha \lambda_{j}$.

