Highlights of GPD 2006

Thorsten Feldmann

(University of Siegen)

ECT* Trento, 5-9 June 2006

organized by Nicole d'Hose (CEA Saclay)

- Peter Kroll (Wuppertal)
- Ralf Kaiser (Glasgow)

Thorsten Feldmann (Siegen)

Introductory Talks:

- A. Belitsky: Understanding Nucleon Structure with GPDs
- M. Burkardt: Hadron Tomography
- M. Diehl: An Introduction to Generalized Parton Distributions

Theoretical Developments:

- S. Friot: GPDs in the Photon
- D. Müller: A new representation for GPDs
- D. Robaschik: Target mass corrections to DVCS
- A. Schäfer (QCDSF): GPDs from Lattice QCD II (Tensor GPDs)
- G. Schierholz (QCDSF): GPDs from Lattice QCD I
- L. Szymanowski (B. Pire): Generalizing GPDs: Transition Distribution Amplitudes
- L. Szymanowski: QCD factorization in γ*γ*

(7 talks

(3 talks)

Phenomenological Analyses and Models:

- M. Diehl: Wide-angle processes
- Th. Feldmann: Analysis of zero-skewness GPDs
- S. Goloskokov: Deeply virtual electro-production of vector mesons
- V. Guzey: Dual parametrization of GPDs and description of DVCS data
- Ph. Haegler: Generalized transversity and transverse spin densities
- S. Liuti: Space-time picture of nuclear effects in QCD
- B. Pasquini: Virtual meson cloud of the nucleon and GPD
- P. Schweitzer: GPDs in the chiral quark-soliton model ...
- M. Siddikov: GPDs for Spin-0 Nuclei
- M. Vanderhaeghen: GPDs and Two-Photon Processes

(10 talks)

Experimental Aspects/Results:

- H. Avakian (JLAB): Hard exclusive processes at CLAS
- P.-Y. Bertin (JLAB): Deep Virtual Compton Scattering in Hall A
- E. Burtin (COMPASS): Status and prospects for GPD studies at COMPASS
- F. Bradamante (Compass): Transversity Physics in DIS
- M. Düren: Physics at Panda
- F. X. Girod (JLAB): DVCS at JLAB/CLAS
- C. C. Kuo: Hadron pair production from two-photon collisions at Belle
- M. Mazouz: DVCS on neutron at JLAB Hall A
- W.D. Nowak: Hermes results and projections on exclusive photon and meson production
- A. Osborne: ρ⁰ production cross section ratios at HERMES
- G. Rosner: Status of Nucleon Form Factor measurements
- A. Rostomoyan: Transverse single-spin asymmetry of exclusive ρ^0 from HERMES
- A. Sandacz: Spin dependence in exclusive ρ⁰ production at COMPASS
- L. Schoeffel: Exclusive production of light states at HERA ...
- C. Van Hulse: The HERMES recoil project
- B. Wojtsekhowski (JLAB): Nucleon Compton Scattering

(16 talks)

Outline

Introduction

Results for DVCS + Meson Production

- JLAB Hall A
- JLAB CLAS
- DESY HERMES
- DESY H1 and ZEUS
- CERN COMPASS
- Theoretical GPD parametrizations for $\xi \neq 0$
- Theoretical models for deeply virtual meson production
- ③ (Generalized) Form factors, Wide-angle processes etc.
 - Nucleon Form Factors
 - GPDs at zero skewness
 - Generalized form factors from lattice
 - Wide-angle processes
 - Transversity GPDs

Conclusions

Introduction

Physical Significance:

- GPDs as hadronic input for factorization theorems (DVCS, etc.)
- Angular momentum distribution of partons ("Ji's sum rule")
- 3-dimensional structure of fast-moving nucleon from impact parameter GPDs ("nucleon tomography")

Experimental Challenge:

Collect detailed data on (hard) exclusive processes !

Theoretical Challenge:

Disentangle dependence on three kinematic variables (x, ξ, t) !

Aim of the workshop:

- Review experimental and theoretical status.
- Set the stage for the next round of GPD analyses.

Experimental results for DVCS + Meson production:

[Avakian]

[Schoeffel]

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > <

M. Dueren:

GPD studies foreseen for PANDA experiment (FAIR facility at GSI, ca. 2013)

Input from the community for optimization of experimental program welcome!

[Nowak]

Azimuthal Asymmetries in DVCS

DVCS–Bethe-Heitler Interference term \mathcal{I} induces azimuthal asymmetries in cross-section:

- Beam-charge asymmetry $A_C(\phi)$ [BC/ $d\sigma(e^+, \phi) - d\sigma(e^-, \phi) \propto \operatorname{Re}[F_1\mathcal{H}] \cdot \cos \phi$
- Beam-spin asymmetry $A_{LU}(\phi)$ [BSA] $d\sigma(\vec{e}, \phi) - d\sigma(\vec{e}, \phi) \propto \text{Im}[F_1\mathcal{H}] \cdot \sin \phi$
- Long. target-spin asymmetry $A_{UL}(\phi)$ $d\sigma(\overleftarrow{\vec{P}}, \phi) - d\sigma(\overrightarrow{\vec{P}}, \phi) \propto \text{Im}[F_1\widetilde{\mathcal{H}}] \cdot \sin \phi$ [LTSA]
- Transverse target-spin asymmetry $A_{UT}(\phi, \phi_s)$ [TTSA]: $d\sigma(\phi, \phi_S) - d\sigma(\phi, \phi_S + \pi) \propto \text{Im}[F_2\mathcal{H} - F_1\mathcal{E}] \cdot \sin(\phi - \phi_S) \cos\phi$ $+ \text{Im}[F_2\widetilde{\mathcal{H}} - F_1\xi\widetilde{\mathcal{E}}] \cdot \cos(\phi - \phi_S) \sin\phi$

 $(F_1,F_2$ are the Dirac and Pauli elastic nucleon form factors) Wolf Diator Novak (DESY), HERMES Collaboration

Trento GPD2006 Workshot

P.-Y. Bertin: DVCS/Hall A

- At JLAB energies, Bethe-Heitler process dominates
- Using polarized beam on unpolarized target \rightarrow Measure cross section sum $d\vec{\sigma} + d\vec{\sigma}$ and difference $d\vec{\sigma} - d\vec{\sigma}$
- Sum sensitive to Re $[\mathcal{T}^{DVCS}]$. Difference sensitive to Im $[\mathcal{T}^{DVCS}]$.
- Test of handbag dominance yield positive results
 - no Q² dependence of extracted twist-2 coefficients
 - twist-3 contributions in $\Delta\sigma$ and σ small
- $\Rightarrow d\overrightarrow{\sigma} d\overleftarrow{\sigma}$ directly probes twist-2 GPDs
- In cross-section sum, bilinear DVCS terms cannot be neglected
- ⇒ Comparison with theory requires some model-dependence! Also applies for asymmetry $\frac{d\vec{\sigma} - d\vec{\sigma}}{d\vec{\sigma} + d\vec{\sigma}}$

[Bertin]

< ロ > < 回 > < 回 > < 回 > < 回</p>

What systematic errors?

[Bertin]

M. Mazouz: DVCS on the <u>Neutron</u> (Hall A)

- Azimuthal asymmetry with polarized electron beam.
- Sensitivity to GPDs Eⁿ (larger than for proton)
- π^0 contamination \approx drops out from deuterium-proton
- Check of exclusivity (systematic error < 3%).
- Asymmetry for DVCS on
 - deuteron (coherent)
 - neutron (incoherent)

enter with different sign (preliminary result of simultaneous fit)

H. Avakian / F.-X. Girod: Hard exclusive processes at CLAS

- DVCS beam spin asymmetries
- DVCS target spin asymmetry
- Studies of exclusive π⁰ background (beam and target SSA)
- Exclusive ρ production (Q^2 dependence, sensitivity to J_u and J_d)
- Dedicated CLAS DVCS experiment (detector upgrade) (43% of data taken, preliminary results on BSA)
- Prospects for CLAS12

Thorsten Feldmann (Siegen)

Hightlights of GPD 2006

W.-D. Nowak: HERMES results and perspectives

- Measurement of BSA, BCA and (long./transv.) target polarization.
- First constraints on GPD models, incl. (model-dependent) constraints on angular momentum J_u and J_d.
- New HERMES recoil detector (with unpolarized proton target)
 Will improve resolution and statistics for azimuthal DVCS asymmetries and exclusive π⁺ production. [dedicated talk by C. Van Hulse]
- Because of two accidents: Data taking starting in July 2006.
 Only run with e⁺ foreseen ⇒ no BCA :-(

Further presentations by

- A. Rostomyan: TSSA $A_{UT}^{\sin(\phi-\phi_s)}$ for exclusive ρ^0 production at HERMES
 - Neglect (probably small) contribution from E^g
 - L/T separation not yet done
 - Not yet enough statistics to constrain J^u
- A. Osbourne: ρ⁰ production at HERMES (cross section ratios)
 - Consider ratio of (longitudinal) ρ^0 production on neutron (i.e. deuterium) and on proton
 - Function of up-, down-, and gluon GPDs
 - Theoretical estimate close to 1 (gluon dominance)
 - Still large errors should be improved with 2007 statistics and recoil detector

Model-dependent Constraint on J_u vs J_d

Unbinned maximum likelihood fit to $A_{UT}^{\sin(\phi-\phi_S)\cos\phi}$ at average kinematics (fitting prel. HERMES data against VGG-model based calculations), leaving J_u and J_d as free parameters \Rightarrow model-dependent 1- σ constraint on J_u vs. J_d :

[Nowak]

< □ > < 同 > < 三 > < 三 >

[Nowak]

L. Schoeffel: Exclusive light states at HERA

- H1/ZEUS kinematics: Q^2 and W^2 span many orders of magnitude, $x \sim 0.01$
- test of QCD evolution (Q²-dependence of cross section)
- Study *t*-dependence, fit exponential with slope parameter *b* (→ update incl. 2004 data)
- Study W-dependence, $d\sigma \sim W^{0.8}$
- Extract the skewing factor $R = DIS/Im[\mathcal{A}^{DVCS}]$
- Sensitivity to gluon distribution
- Comparison with dipole formulation ("geometric scaling")

Summary for the DVCS at H1/ZEUS

- Data in good agreement with NLO predictions : GPDs ≡ PDFs at low scale and skewing generated dynamically from the QCD evolution...
- 'Re' part contributes to a few %

[Schoeffel]

[Schoeffel]

< □ > < @ > < @ > < @ > < @ > < @ > < </p>

A. Sandacz: Exclusive ρ^0 at COMPASS

Longitudinal double-spin asymmetry A^p₁(d)

- first measurement at small Q² and small x
- consistent with zero
- High-statistics data on ρ^0 spin-density matrix elements and $R = \sigma_L / \sigma_T$
 - σ_L dominates for $Q^2 > 2 \text{ GeV}^2$
 - weak violation of s-channel helicity conservation
 - extraction of 23 SDMEs from 2003/4 data under way
- Studies of coherent ρ⁰ production foreseen.
- Analysis of exclusive ϕ and J/ψ in progress.

COMPASS preliminary and HERMES results on A_1^{ρ} (d)

[Sandacz]

E. Burtin: GPDs at COMPASS (DVCS prospects)

- 80% polarized μ^+ and μ^- beams
- Compass could provide data on
 - Cross section (190 GeV)
 - BCA (100 GeV)
 - Wide range of Q^2 and $x_{\rm Bj}$ values
- o possible roadmap:
- 2006: test of recoil detector prototype ($\sqrt{}$)
- 2007: proposal
- 2007-09: construction (rec. detector, LH₂ target, ECALO)
- \geq 2010: study of GPDs at COMPASS

Projected errors of a possible DVCS experiment

[Burtin]

Theoretical GPD parametrizations for $\xi \neq 0$

- Generate non-trivial ξ -dependence.
- Satisfy polynomiality conditions.
- Satisfy positivity.
- Implement NLO evolution.

D. Müller: A new representation for GPDs

Mellin-Barnes representation of GPDs:

[DM/Kirch/Manoshov/Schäfer 05]

$$q(x,\xi,t;\mu^2) = \frac{1}{2i} \int_{c-i\infty}^{c+i\infty} dn \; \frac{p_n(x,\xi)}{\sin(\pi n)} \; E_n(\mu^2,\mu_0^2) \; q_n(\xi,t;\mu_0^2)$$

- $p_n(x,\xi)$ known basis functions
- $E_n(\mu^2, \mu_0^2)$ simple evolution operator (anom. dimensions)

Constraints on $q_n(\xi, t; \mu_0^2)$:

- polynomiality in ξ
- form factors: $F(t) \equiv q_1(\xi, t; \mu_0)$
- Mellin moments of PDFs: $q_n(\mu_0) \equiv q_1(\xi = 0, t = 0; \mu_0)$

Summary

The *Mellin–Barnes representation* for GPDs looks complicated. However, it has several advantages:

- crossing relation GPDs ⇔ GDAs is trivial
- partial wave decomposition ⇒ tool to study duality
- separation of variables ⇒ better GPD ansaetze/models
- convenient representation of scattering amplitudes
- simple and stable numerics that includes evolution (important for MC simulations)
- first view beyond NLO in DVCS for a special scheme

This representation is not restricted to a special scheme.

It can be implemented at NLO for hard photon and meson electroproduction in the $\overline{\rm MS}$ scheme, too.

[Müller]

V. Guzey: Dual parametrization of GPDs and DVCS

Postulate representation of proton singlet GPDs in terms of Gegenbauer polynomials and partial waves [Shuvaev/Polyakov 02]

$$H^{q}(x,\xi,t;\mu^{2}) = \sum_{\substack{n=1 \ \text{odd}}}^{\infty} \sum_{\substack{\ell=0 \ \text{even}}}^{n+1} B^{q}_{n\ell}(t,\mu^{2}) \ \theta(\xi-|x|) \left(1-x^{2}/\xi^{2}\right) C^{3/2}_{n}(x/\xi) P_{\ell}(1/\xi)$$

- simple LO evolution and LO DVCS amplitudes
- divergent series of t-channel exchanges (→ duality)
- use Polykov/Shuvaev trick and get $B_{n\ell}^q$ from generating function
- keep minimal number of generating functions relevant for small values of ξ
- need further model assumptions on forward limit of E^q and D-term
- t-dependence: factorized vs. Regge with α' > α'_P
- economical description of DVCS observables
- Regge model for t-dependence preferred by HERMES data on A_C and A_{UT}

S. Goloskokov:

Deeply virtual vector meson production (theory model)

- Use DD ansatz to model GPDs.
- Use pomeron slope $\alpha' \sim 0.15$ for *t*-dependence of gluons/sea quarks.
- Use vector meson production to constrain gluon/sea below x = 0.01.
- In hard-scattering use k_⊥-dependent LCWF for mesons and Sudakov form factors (transverse radius = fit parameter)
- Cross sections for HERMES and HERA energies.
- Results for fitted gluon distribution.

Full line cross section, dashed bluegluon contribution, dashed-dot- red gluon-strange interference.

Cross sections with errors from uncertainty in parton distributions.

[Goloskokov]

Nucleon Form Factors

- Input for GPD and DD reduction formulas.
- Constraints on models for x-t correlation in GPDs.

G. Rosner: Nucleon form factor measurements (status)

- Vector form factors for proton and neutron (space-like) extended Q² range from JLAB upgrade
- Axial form factors (only dipole fit → M_A) Induced PS form factor (only G_P(≈ 0))
- Strangeness form factors
- Time-like form factors: factor-2 larger than space-like, neutron > proton ?
 - new data from Belle/Babar ...
 - phase between G_E and G_M from Panda [see talk by Dueren]?

[Rosner, see below]

• • • • • • • • • •

World data (*a*) $Q^2 \sim 0.1 \text{ GeV}^2$

- G_M^s = 0.28 ± 0.20
 G_E^s = -0.006 ± 0.016
- ~ 3% ± 2.3% of magnetic moment
 ~ 0.2% ± 0.5% of charge distribution
- HAPPEX-only fit:
 G_M^s = 0.12 ±0.24
 G_E^s = -0.002 ± 0.017

[Rosner]

M. Vanderhaeghen: GPDs and two-photon processes

- Rosenbluth separation data incompatible with recent JLAB Hall A data from polarization transfer
- May be explained by two-photon processes:
 - Big effect in Rosenbluth analysis for large Q²
 - Small correction to polarization transfer (1-3%)
- Model-independent extraction of correction term from data.
- In line with partonic calculation (handbag + cat's ears diagrams + GPD model)

Two-photon exchange : partonic calculation

Thorsten Feldmann (Siegen)

[Vanderhaeghen]

Th. Feldmann: (valence) GPDs at zero-skewness

Ansatz for exponential t-dependence

 $H^q_{\nu}(x,t) := q_{\nu}(x) \exp [t f_q(x)] , \qquad E^q_{\nu}(x,t) := e^q_{\nu}(x) \exp [t g_q(x)]$

- $q_v(x)$ from standard PDFs. Positivity bounds constrain $e_v^q(x)$.
- Qualitative behaviour of profile functions $f_q(x)$ and $g_q(x)$ from Regge phenomenology and physical intuition about impact-parameter GPDs.
- Fit to electromagnetic proton and neutron form factors.
- strong correlation between x and t-dependence
- transverse size for large values of x (default fit):

$$d_q(x) = \frac{b_q(x)}{1-x} \xrightarrow{x \gg 0.1} \begin{cases} 0.44 \text{ fm} \\ 0.6 \text{ fm} \end{cases}$$

(u-quarks) (d-quarks)

• orbital momentum of valence quarks (default fit):

 $2(L_v^u - L_v^d) = -(0.77 \text{ to } 0.92), \quad 2(L_v^u + L_v^d) = -(0.11 \text{ to } 0.22)$

consistent with QCDSF lattice results.

"nucleon tomography"

[also discussed by M. Burkardt]

The default fit

$(\alpha' \equiv 0.9 \text{ GeV}^{-2})$

profile function

$$f_q(x) = -\alpha' (1-x)^3 \ln x + B_q (1-x)^3 + A_q x (1-x)^2$$

fit parameters	correlation
$A_u = (1.22 \pm 0.02) \text{ GeV}^{-2}$ $A_d = (2.59 \pm 0.29) \text{ GeV}^{-2}$ $B_u \equiv B_d = (0.59 \pm 0.03) \text{ GeV}^{-2}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Thorsten Feldmann (Siegen)

Nucleon tomography from default fit to $F_{1,2}^{\rho,n}$

valence quarks: unpolarized (up and down)

[Diehl/TF/Jakob/Kroll 2004]

Thorsten Feldmann (Siegen)

Nucleon tomography from default fit to $F_{1,2}^{\rho,n}$

valence quarks: polarized

(sizeable systematic uncertainties due to $e_v(x)$!)

x=0.6

[Diehl/TF/Jakob/Kroll 2004]

Thorsten Feldmann (Siegen)

Frascati, June 2006 42 / 57

G. Schierholz: QCDSF results I

- Simulations with unquenched Wilson fermions
- Generalized form factors → angular momentum:

 $J^{u} = 0.32(4), \ J^{d} = -0.21(4), \ 2L^{u+d} = 0.06(14), \ 2L^{u-d} = -0.90(12)$

also: $E^u + E^d \approx 0$

- Systematic uncertainties (chiral extrapolation! disconnected diagrams)
 - needs simulations with smaller pion masses
 - more studies on χ PT for GPD moments
- To what extent shall we use lattice results as constraints for phenomenological parametrizations?

Wide-angle processes

M. Diehl:

- Understand dynamics in γh → γh and hh̄ ↔ γγ at large angles and large energy (s, t, u ≫ M², also VCS)
- test soft spectator mechanism (one fast parton in the hadron, mimics dimensional counting)
- Extract relevant (Compton) form factors (of natural size?)
- Corrections? (NLO, twist-3, target-mass)
- Ilavour symmetry and test of handbag:

$$d\sigma[\pi^0\pi^0]\simeq d\sigma[\pi^+\pi^-]\simeq d\sigma[K^+K^-]$$
 and $d\sigma[K^0_sK^0_s]\simeq rac{2}{25}\,d\sigma[K^+K^-]$

Wide-angle Compton scattering

 $\gamma p \rightarrow \gamma p$ at large $s \sim -t \sim -u$ ($\theta = \angle(p, \gamma)$ away from 0° and 180°)

- hard scattering mechanism: dσ/dt ∼ f(θ) s⁻⁶ same problems with phenomenology as F₁(s)
- ► slow spectator mechanism: spectators soft $\sim \Lambda^2$ fast quark semi-hard $\sim \Lambda \sqrt{-t}$ and $\gamma q \rightarrow \gamma q$ hard $\sim t$ \sim factorization of long- and short-distance dynamics A. Radyushkin '98, M.D. et al. '98

[Diehl]

B. Wojtsekhowski: Nucleon Compton Scattering (JLAB)

- Study scaling of differential cross sections with s
- Compare with handbag: fits well with predictions from Kroll et al.
- Extract Compton form factors:
 - From cross section: $R_V/F_1 > 1$ and approx. constant
 - From polarization transfer K_{LL} : $R_A/R_V \approx 0.8$
 - ⇒ Only small correction of KN result: proton behaves almost like free fermion (fast quark takes all the photon spin)
- New measurements of K_{LL} (smaller angles) and A_{LL} planned.
- Perspectives for JLAB@12 GeV.
- Proposal for neutron CS.
- WACS prefers handbag → include results for Compton form factors into global fit?

[Wojtsekhowski]

< □ > < □ > < □ > < □ >

CC. Kuo:	$\gamma\gamma ightarrow hh$	at BELLE
----------	------------------------------	----------

- abundance of clean γγ events with W_{γγ} ≤ 4.5 GeV (pions, kaons, proton, Λ, Σ⁰)
- test dynamic pictures (pQCD, diquark, handbag)
- study W-dependence: steeper than pQCD
- study θ-dependence
 - consistent with $\sin^{-4} \theta$
 - steeper for higher energies
- $\sigma(K^+K^-)/\sigma(\pi^+\pi^-)$ consistent with 1
- $\sigma(K_s^0 K_s^0) / \sigma(K^+ K^-) = 0.13 \rightarrow 0.01$
- [observation of charmonium resonances]

(i.e. between handbag and pQCD)

Thorsten Feldmann (Siegen)

Frascati, June 2006 49 / 57

[Kuo]

♦ Consistent with the ascending trend of the hard scattering amplitude $\propto \frac{1}{tu} \propto \frac{1}{1-\cos^2 \theta^*}$

• Steeper at higher $|\cos \theta^*|$ than all present predictions

[Kuo]

Transversity Physics (brief)

F. Bradamante (COMPASS): Transversity Physics in DIS

- Physics issues
- Comparison of HERMES and COMPASS
- Collins and Sivers asymmetries
- Two-hadron asymmetries
- Λ polarimetry
- Perspectives (new COMPASS fixed-target proposal for transversity and GPDs)

... more during this conference ...

... see also introductory talk by M. Burkardt ...

A. Schäfer: QCDSF results II

- Measure tensor form factors, charges: $A_{T10}^u A_{T10}^d = 1.068 \pm 0.016$
- Tensor GPD form factors are large: \Rightarrow substantial $\vec{b}_{\perp} \times \vec{S}$ correlations
- Also applies to Pion!

Ph. Haegler: Transversity GPDs

- Preliminary result for transverse spin densities
- Connection with Sivers- and Boer-Mulders effect
- Equation-of-motion constraints between twist-2 and twist-3
- Importance of tensor GPDs for positivity bounds
- Comparison with transverse-momentum-dependent PDFs (dictionary)

The generalized formfactors A_{T10} and A_{T20} together with dipole fits.

[Schäfer (QCDSF)]

preliminary results for the transverse spin densities

[Haegler (Diehl/Haegler)]

Dictionary GPDs↔TMDPDFs

[Haegler]

A D > A B > A B > A B >

More Talks

- D. Robaschik: consistent implementation of target mass corrections in DVCS.
- L. Szymanowski:
 - Transition Distribution Amplitudes, e.g. $\langle \pi | q(z_1) q(z_1) q(0) | p \rangle$
 - QCD factorization in $\gamma^*\gamma^*$, perturb. analysis of kinematical limits.
- S. Friot: Photon GPDs (from perturbative calculation of box diagram)
- B. Pasquini: Virtual meson cloud of the nucleon and GPDs
 - light-cone Hamiltonian model for bare nucleon and mesons
 - calculate higher Fock states (one-meson approx.)
 - derive GPDs from overlap formula
- P. Schweitzer: Chiral quark-soliton model:
 - form factors of energy-momentum tensor
 - mechanical interpretation (pressure and shear forces)
- S. Liuti and M. Siddikov: GPDs for Nuclei
 - space-time picture of nuclear effects (off-forward EMC effect, nuclear shadowing, colour transparency)
 - coherent and incoherent DVCS and BH
 - modelling

GPDs: "From the Ice-Age to the Bronze-Age

[anonymous speaker]

- GPD analyses are starting to be data-driven!
 - DVCS (azimuthal asymmetries)
 - DVMP
 - Form factors and wide-angle processes
- Important to disentangle x, ξ and t dependence!
 - Experimental binning
 - Theoretical parameterizations
 - Improved lattice constraints (chiral extrapol.)
- Long-term goal: ("wish/suggestion" by W.D. Nowak)
 - Define standards → Database for GPDs
 - Perform global fits