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Deeply Virtual Compton Scattering (DVCS) Amplitude

Deeply virtual Compton scattering :

q q' q'q

P'PP'P

Incident photon highly virtual, final photon real; momentum transfer ∆ = P − P ′, t = ∆2

Momenta of initial and final proton :

P =

„

P+ , ~0⊥ ,
M2

P+

«

, P ′ =

 

(1 − ζ)P+ , −~∆⊥ ,
M2 + ~∆2

⊥

(1 − ζ)P+

!

t = 2P · ∆ = −
ζ2M2 + ~∆2

⊥

1 − ζ
,

Q2

2P · q = ζ

ζ : skewness variable

For DVCS, −q2 = Q2 is large compared to the masses and | t |

Choose a frame where the incident space-like photon carries q+ = 0
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DVCS (contd.)

DVCS amplitude

MIJ (~q⊥, ~∆⊥, ζ) = εIµ ε
∗J
ν Mµν(~q⊥, ~∆⊥, ζ) = −e2q

1

2P̄+

Z 1

ζ−1
dx

×


tIJ (x, ζ) Ū(P ′)

»

H(x, ζ, t) γ+ + E(x, ζ, t)
i

2M
σ+α(−∆α)

–

U(P )

ff

,

where P̄ = 1
2
(P ′ + P ),

Do not consider 1
Q

contributions ; x is the fraction of the proton momentum carried by

the active quark

For circularly polarized initial and final photons

t ↑↑(x, ζ) = t ↓↓(x, ζ) =
1

x− iε
+

1

x− ζ + iε

Fλ,λ′ =

Z

dy−

8π
eixP+y−/2 〈P ′, λ′|ψ̄(0) γ+ ψ(y) |P, λ〉

˛

˛

˛

˛

y+=0,y⊥=0

=
1

2P̄+
Ū(P ′, λ′)

»

H(x, ζ, t) γ+ + E(x, ζ, t)
i

2M
σ+α(−∆α)

–

U(P, λ),
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DVCS (contd.)

Light-front time ordered contributions to DVCS at leading twist
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Overlap Representation

• The target state is expanded in terms of multiparticle light-front wave functions in Fock

space; choose light-front gauge

DVCS amplitude is given in terms of overlaps of the light-front wave functions

Diehl, Feldman, Jacob, Kroll (2001);

Brodsky, Diehl, Huang (2001)

• Diagonal parton number conserving n→ n overlap in the kinematical regime

ζ < x < 1 and ζ − 1 < x < 0

Off-diagonal n+ 1 → n− 1 overlap for 0 < x < ζ where the parton number is

decreased by two.

• Consider a dressed electron state instead of a proton

State is expanded in Fock space : | e−γ〉 and | e−e−e+〉 contribute to O(α)

• Generalized form of QED : mass M to the external electrons, m to the internal electron
lines λ to the internal photon lines → composite fermion state with mass M : a fermion

and a vector ‘diquark" constituents

Brodsky, Drell (1980)

• Two and three particle LFWFs are systematically evaluated in perturbation theory
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DVCS in QED at one loop

In the kinematical region ζ < x < 1 one has 2 → 2 contribution

F 22
++ =

√
1 − ζ

1 − ζ
2

H(2→2)(x, ζ, t) − ζ2

4(1 − ζ
2
)
√

1 − ζ
E(2→2)(x, ζ, t)

=

Z

d2~k⊥

16π3

»

ψ↑∗

+ 1
2
+1

(x′, ~k′⊥)ψ↑

+ 1
2
+1

(x,~k⊥) + ψ↑∗

+ 1
2
−1

(x′, ~k′⊥)ψ↑

+ 1
2
−1

(x,~k⊥)

+ ψ↑ ∗

− 1
2
+1

(x′, ~k′⊥)ψ↑

− 1
2
+1

(x,~k⊥)

–

,

F 22
+− =

1√
1 − ζ

(∆1 − i∆2)

2M
E(2→2)(x, ζ, t)

=

Z

d2~k⊥

16π3

»

ψ↑∗

+ 1
2
−1

(x′, ~k′⊥)ψ↓

+ 1
2
−1

(x,~k⊥) + ψ↑∗

− 1
2
+1

(x′, ~k′⊥)ψ↓

− 1
2
+1

(x,~k⊥)

–

,

where

x′ =
x− ζ

1 − ζ
, ~k′⊥ = ~k⊥ − 1 − x

1 − ζ
~∆⊥.
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DVCS in QED at one loop (contd.)

In the kinematical region 0 < x < ζ contribution comes from 3 → 1 overlap :

F 31
++ =

√
1 − ζ

1 − ζ
2

H(3→1)(x, ζ, t) − ζ2

4(1 − ζ
2
)
√

1 − ζ
E(3→1)(x, ζ, t)

=
p

1 − ζ

Z

d2~k⊥

16π3

»

ψ↑

+1
2

+ 1
2

−
1
2

(x, 1 − ζ, ζ − x, ~k⊥,−~∆⊥, ~∆⊥ − ~k⊥)

+ ψ↑

−
1
2

+ 1
2

+ 1
2

(x, 1 − ζ, ζ − x,~k⊥,−~∆⊥, ~∆⊥ − ~k⊥)

–

F 31
+− =

1√
1 − ζ

(∆1 − i∆2)

2M
E(3→1)(x, ζ, t)

=
p

1 − ζ

Z

d2~k⊥

16π3

»

ψ↓

+ 1
2

+ 1
2

−
1
2

(x, 1 − ζ, ζ − x, ~k⊥,−~∆⊥, ~∆⊥ − ~k⊥)

+ ψ↓

−
1
2

+ 1
2

+ 1
2

(x, 1 − ζ, ζ − x,~k⊥,−~∆⊥, ~∆⊥ − ~k⊥)

–

third region ζ − 1 < x < 0 does not contribute : corresponds to the emission and

reabsorption of a positron from the physical electron
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Real and Imaginary Parts of the Amplitude

• Real and imaginary parts of the DVCS amplitude are calculated separately using the

principal value prescription for the propagator and using the explicit form of the two-and

three-particle LFWFs

Imaginary part of the DVCS amplitude :

Im[Mλ,λ′ ](ζ,∆⊥) = −iπe2
» Z ζ

0
dx F 31

λ,λ′ [ δ(x− ζ) ] +

Z 1

ζ
dx F 22

λ,λ′ [ δ(x− ζ) ]

–

= −iπe2
»

F 22
λ,λ′(x = ζ,∆⊥) + F 31

λ,λ′(x = ζ,∆⊥)

–

.

Real part of the DVCS amplitude :

Re [Mλ,λ′ ] (ζ,∆⊥) = −e2
Z ζ−ε1

ε
dx F 31

λ,λ′(x, ζ,∆
⊥)

»

1

x
+ P

„

1

x− ζ

«–

−e2
Z 1−ε

ζ+ε1

dx F 22
λ,λ′ (x, ζ,∆

⊥)

»

1

x
+ P

„

1

x− ζ

«–

.

Note : x = 0 is an end point for a dressed electron

We have used cutoffs at ε = ε1 = 0.001 for the numerical calculation; divergence at

x = ζ gets canceled between 2 → 2 and 3 → 1 contributions.
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Fourier Transform

• In order to obtain the DVCS amplitude in y− space, we take a Fourier transform in ζ as,

A++(σ,∆⊥) =
1

2π

Z 1−ε2

ε2

dζ eiσζ M++(ζ,∆⊥),

A+−(σ,∆⊥) =
1

2π

Z 1−ε2

ε2

dζ eiσζ M+−(ζ,∆⊥),

where σ = 1
2
P+y− is the (boost invariant) longitudinal distance on the light cone

We take the cutoff ε2 = 0.002

• Fourier transforms have been performed by numerically calculating the Fourier sine

and cosine transforms and then calculating the resultant by squaring them, adding and

taking the square root

• Helicity non-flip part of the amplitude depends on the scale Λ. We took Λ = Q = 10

MeV.
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Imaginary Part of the DVCS Amplitude in σ Space
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• (a) When the electron helicity is not flipped, (b) helicity is flipped

•M = 0.5 MeV, m = 0.8 MeV, λ = 0.02 MeV, t is in MeV2

• No diffraction pattern in (b), diffraction pattern in σ in (a)

•
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Imaginary Part of the DVCS Amplitude in ζ
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• LHS: When the electron helicity is flipped, RHS: helicity is not flipped

• Imaginary part of the helicity flip amplitude vanishes as ζ → 0

• In both cases, amplitude decreases as | t | increases for fixed ζ, allowed range of ζ

increases
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Real Part of the DVCS Amplitude in σ
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• (a) When the electron helicity is not flipped, (b) helicity is flipped

•M = 0.51 MeV, m = 0.5 MeV, λ = 0.02 MeV, t is in MeV2

• Diffraction pattern in σ in both cases

• As | t | increases the first minima move in

•
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Real Part of the DVCS Amplitude in ζ
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• LHS: When the electron helicity is flipped, RHS: helicity is not flipped

• Both are finite at ζ close to 0

• In both cases, amplitude decreases as | t | increases for fixed ζ, allowed range of ζ

increases

•
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Simulated model for a hadron

• Dressed electron calculation : used cutoffs at x = 0, 1, real part of DVCS amplitude

depends on these cutoffs

• Wave function depends on bound state mass square M 2 : differentiation wrt M2

increases the fall-off of the LFWFs near the end points and simulates the wave functions

of a hadron

• Convolutions of these wave functions gives the DVCS amplitude for the simulated

hadron model

• Note : Differentiation of the single particle wave function gives zero : so the 3 → 1
overlap vanishes in this model

• 2 particle wave function is normalized to 1

• The equivalent but easier way is to differentiate the DVCS amplitude with respect to the

initial and final state masses.

•
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Simulated model for a hadron : Structure Function

0 0.2 0.4 0.6 0.8 1
x

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

F
2
(x)/x

F
2
(x)

(c)

• Mass parameters M = 150,m = λ = 300 MeV
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Helicity Flip DVCS Amplitude in the Simulated Model
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• Differentiation wrt M2 brings an extra factor of x− ζ in the numerator : imaginary part

of the DVCS amplitude vanishes in this model

• This can never happen in forward virtual Compton scattering amplitude : imaginary

part is still non zero there and gives the structure function

•
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Helicity Non-flip DVCS Amplitude in the Simulated Model
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• Mass parameters M = 150,m = λ = 300 MeV

• Helicity non-flip amplitude decreases as ζ increases for fixed | t |

• Diffraction pattern in σ
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Optics Analog

• In DVCS, we are effectively looking at the interference pattern between the plane wave

of the initial virtual photon and the plane wave of the outgoing real photon. The

final-state proton wavefunction is modified relative to the incident proton wavefunction

because of the momentum transferred to the quark in the hard Compton scattering. The

change in quark momentum along the longitudinal direction ζ can be Fourier transformed

to a boost-invariant distribution in the longitudinal light-front coordinate σ = 1
2
y−P+.

• In the case of the optical diffraction pattern obtained in a single-slit experiment, the

size of the central maximum is proportional to λ/L where λ is the wavelength and L is

the slit width. Deeply virtual Compton scattering is analogous to the diffractive scattering

of an electromagnetic wave in optics, where the diffractive pattern in σ reflects the size of

the scattering center in units of the target’s Compton scale.

• The diffractive patterns in σ sharpen and the positions of the first minima typically

move in with increasing momentum transfer −t, which means that the ratio λ/L is

governed by t.

•
Brodsky, Chakrabarti, Harindranath, AM, Vary, hep-ph/0604262
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Summary and Conclusions

•Fourier transform of the Deeply Virtual Compton Scattering (DVCS) amplitude with

respect to the skewness variable ζ provides a unique way to visualize the light-front

wavefunctions (LFWFs) of the target state in the boost-invariant longitudinal coordinate

space variable (σ = P+y−

2
).

• As a specific example, we consider a fermion state at one loop in QED. We then

simulate the wavefunction for a hadron by differentiating the above LFWFs with respect

to M2 and study the corresponding DVCS amplitudes in σ space.

•Results are analogous to the diffractive scattering of a wave in optics in which the

dependence of the amplitude on σ measures the physical size of the scattering center of

a one-dimensional system.

• If one combines this longitudinal transform with the Fourier transform of the DVCS

amplitude with respect to the transverse momentum transfer ∆⊥, one can obtain a

complete three-dimensional description of hadron optics at fixed light-front time

τ = t+ z/c.

•
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