The QCD evolution of F_2^p at small– x^*

Cristian Pisano

II. Institut für Theoretische Physik Universität Hamburg

2nd Workshop on the QCD Structure of the Nucleon Villa Mondragone, Monte Porzio Catone (Rome) 13 June 2006

- The structure function of the proton F_2 in QCD
- Standard χ^2 analysis
- Curvature test of F_2
- Results
- Summary and conclusions

* EPJ C40, 515 (2005); in collaboration with M. Glück and E. Reya

• At fixed x and $Q^2 \gtrsim 1 \text{ GeV}^2$, the structure function of the proton F_2 appears to depend logarithmically on Q^2

- This behaviour arises from perturbative QCD (pQCD), which dictates the Q^2 -evolution of the underlying parton distributions $f(x, Q^2)$, f = q, \bar{q} , g
- The parton distributions are fixed at a specific input scale $Q^2 = Q_0^2$, mainly by experiment, only their evolution to any $Q^2 > Q_0^2$ being predicted by pQCD

Does the NLO pQCD Q^2 -evolution agree with recent HERA data on F_2 at $x \leq 10^{-3}$?

- In order to answer, we adopt two sets of input distributions at $Q_0^2 = 1.5 \text{ GeV}^2$ with $u_v = u \bar{u}$, $d_v = d \bar{d}$, $s = \bar{s}$, $\Delta \equiv \bar{d} \bar{u}$ taken from GRV98
 - best fit set: the sea $\bar{u} + \bar{d}$ and the gluon g GRV distributions are modified in the small-x region to obtain an optimal fit to the data
 - GRV_{mod} set: the $\bar{u} + \bar{d}$ and g GRV distributions are modified as little as possible in the small-x region
- The input distributions $f = \bar{u} + \bar{d}$, g at $Q_0^2 = 1.5 \text{ GeV}^2$ are expressed as

$$xf(x, Q_0^2) = Nx^{-a} \left(1 + b\sqrt{x} + cx\right) (1-x)^d$$

the parameters c, d being kept unchanged and taken from GRV. The refitted relevant small-x parameters are

best fit set: N_s , a_s , b_s , N_g , a_g , b_g GRV_{mod} set: N_s , a_s , b_s , a_g

• The data considered are restricted to

1.5 GeV² $\leq Q^2 \leq 12$ GeV², $3 \times 10^{-5} \leq x \leq 3 \times 10^{-3}$ C. Adloff et al., H1 Collab., EPJ C21, 33 (2001)

• Both fits are compatible with the data, yielding comparable χ^2 : agreement between the NLO Q^2 -evolution of $f(x,Q^2)$ and the measured Q^2 -dependence of $F_2(x,Q^2)$

• Both of the new small-x gluon distributions at $Q^2 = 4.5 \text{ GeV}^2$ conform to the rising shape obtained in most available analyses published so far

 It is possible to conceive a valence–like gluon at some very–low Q² scale, but even in this extreme case the gluon ends up as non valence–like at Q² > 1 GeV², in particular at Q² = 4.5 GeV² Curvature test of F_2

• At $x = 10^{-4}$ most measurements lie along a straight (dotted) line, if plotted versus

$$q = \log_{10} \left(1 + \frac{Q^2}{0.5 \,\mathrm{GeV}^2} \right)$$

D. Haidt, EPJ C35, 519 (2004)

• MRST01 fit: sizable curvature for F_2 , incompatible with the data, mainly caused by the valence–like input gluon distribution at $Q_0^2 = 1 \text{ GeV}^2$

Calculation of the curvature

• The curvature $a_2(x) = \frac{1}{2} \partial_q^2 F_2(x, Q^2)$ is evaluated by fitting the predictions for $F_2(x, Q^2)$ at fixed values of x to a (kinematically) given interval of q, as

$$\begin{array}{c}
1.5 \\
0 \\
0.5 \\
0 \\
-0.5 \\
-0.5 \\
1 \\
0 \\
0 \\
-0.5 \\
1 \\
10^{-5} \\
10^{-4} \\
10^{-4} \\
0^{-1} \\
0^{-1} \\
0^{-1} \\
0^{-1} \\
0^{-1} \\
0^{-1} \\
0^{-1} \\
0^{-1} \\
0^{-1} \\
0^{-1} \\
0^{-1} \\
0^{-1} \\
0^{-1} \\
0^{-1} \\
0^{-1} \\
0^{-1} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2} \\
0^{-2}$$

$$F_2(x,Q^2) = a_0(x) + a_1(x)q + a_2(x)q^2$$

- (a): The average value of q decreases with decreasing x due to the kinematically more restricted Q^2 range accessible experimentally
- Both of our fits agree with the experimental curvatures, as calculated by Haidt using H1 data

<u>Results</u>

• (b): For comparison $a_2(x)$ is also shown for an *x*-independent fixed *q*-interval

- Perturbative NLO evolutions result in a positive curvature $a_2(x)$, which increases as x decreases
- This feature is supported by the data; the data point at $x < 10^{-4}$ is statistically insignificant. Future precision measurements in this very small *x*-region should provide a sensitive test of the range of validity of pQCD evolutions

- A dedicated test of the pQCD NLO parton evolution in the small-*x* region has been performed
- The Q^2 -dependence of $F_2(x,Q^2)$ is compatible with recent high-statistics measurements in that region
- A characteristic feature of perturbative QCD is a positive curvature $a_2(x)$, which increases as x decreases
- Present data are indicative for such a behaviour, but they are statistically insignificant for x < 10⁻⁴.
 The H1 Collab. has found a good agreement between the perturbative NLO evolution and the slope of F₂, a₁(x), i.e. the first derivative ∂_{Q²}F₂
- Future precision measurements should provide further information concerning the detailed shapes of the gluon and the sea distributions at very small *x* and perhaps may even provide a sensitive test of the range of validity of pQCD