Future Exclusive Measurements at HERMES

Ralf Kaiser, University of Glasgow on behalf of the HERMES Collaboration

- The Recoil Detector Upgrade
- Data Taking in 2006/7
- Projections for Exclusive Measurements

HERMES Physics

- Development from inclusive over semi-inclusive to exclusive measurements over decade 1995 - 2005.
- Physics emphasis moved from polarised structure functions to quark helicities and transversity to GPDs.
- Upgrades/changes to the experimental apparatus: RICH detector for semi-inclusive measurements, transverse target for transversity
- The final step is the recoil detector upgrade for exclusive measurements, the focus of the final year of HERMES data taking.
- Recent exclusive HERMES results: C.Hadjidakis (overview), A.Rostomyan, Z.Ye.

HERMES with Recoil Detector

∇ R.Kaiser - HERMES Future - p.3/26

HERMES with Recoil Detector

R.Kaiser - HERMES Future - p.3/26

HERMES Recoil Detector - 3D CAD

Goals of the Recoil Detector

- Detection of all reaction products over the entire momentum range to guarantee the exclusivity of the reaction:
 - Recoil protons
 - Pions and protons from background processes e.g. Δ^+ -production with bremsstrahlung
 - Photons from $\pi^{\mathbf{0}} \rightarrow \gamma \gamma$
- Si-detector: low t, SciFi detector: higher t
- Improved systematics due to removal of background (see left).
- Improved statistics due to high density unpolarised target.

Exclusivity

- Coplanarity cut, pion suppression, photon detection; efficiency ~50% (MC simulation)
- Reduction of the non-exclusive background:
 - semi-incl.: $5\% \rightarrow \ll 1\%$
 - associated prod.: $11\% \rightarrow \sim 1\%$

Recoil Detector - Complete Setup

Recoil Detector Event

Event with single track in SFT and photon detector.

Average hit multiplicity per SFT layer \sim 3.

HERMES Data Taking HERA Run II

R.Kaiser - HERMES Future - p.9/26

Target Cell Accident

- March: damage probably due to accidental beam loss
- May: radiation damage to silicon detector due to second incident
- Si detector removed for repair, re-installation end of June
- DVCS BCA affected most, lose recoil protons at small t
- SciFi detector available for part of the e⁻ data, MC studies under way.

<u>HERMES Statistics Overview (pb^{-1})</u>

HERA-I (1996-2000)	Н	D	4 He	N_2	Ne	Kr	Xe
e ⁻	11	50	-	-	-	-	-
e^+	240	320	30	50	86	30	-
HERA-II (2002-2007)							
e ⁻	250	150	-	-	-	50	50
e^+	820	200	-	-	-	55	30
of which e ⁺ with RD	750	200	-	-	-	-	-

- DVCS BCA: Published 10 $pb^{-1} e^{-1}$. Expect to have 250 $pb^{-1} e^{-1}$.
- Total cross section for VM and PSM production on hydrogen: 1.3 fb⁻¹.
- 2006/7 running: $23M \rightarrow 56M$ DIS events on (unpolarised) hydrogen
- Average beam polarisation only \sim 35% for HERA-II, while \geq 50% for HERA-I.

Exclusive Processes to Constrain GPDs

 Q^2 P' Q^2 , t<< $\gamma, \rho^{\circ}, \pi...$ γ^* H, E, H, E N' t DVCS $e \stackrel{\leftarrow}{p} \rightarrow ep \gamma$ H(BSA/BCA) $e^{\pm} \rightarrow ep \gamma$ HVector $ep \rightarrow ep \rho^0$ H, EMesons $ep \rightarrow ep \phi^0$ H, EPseudoscalar $ep \rightarrow en\pi^+$ $\widetilde{H}, \widetilde{E}$ Mesons $ep \rightarrow en\pi^+$ $\widetilde{H}, \widetilde{E}$

Quantum number of final state selects GPD.

HERMES measures many different final states simultaneously with the same spectrometer !

Exclusive Measurements at HERMES

Process	Comments	Learn about GPDs	Recoil Detector	Can Do
DVCS BCA	unique !	D-term	desirable (but n/a)	++
DVCS BSA	vs x_B, t	constrain H^u	desirable	++
$\Delta DVCS$	first measurement	$N \to \Delta \text{ GPDs}$	required	?
$\sigma_L(ho^0,\phi^0)$	vs Q^2	quarks/gluons	not necessary	++
$\sigma_L(\omega^0, \rho^+)$	vs Q^2	quarks/gluons	not necessary	+
$ ho:\omega:\phi$	cross.sec. ratio	H, E flavours	not necessary	+
$ ho^0, \phi^0 \; {\sf SDME}$	vs t	comp. GPD model	not necessary	++
$\sigma_L(\pi^+)$	VS x_B	$\stackrel{\sim}{H^u}-\stackrel{\sim}{H^d}$	not necessary	++
$\pi^+:\pi^0:\eta$	cross.sec. ratio	\tilde{H},\tilde{E} flavours	not necessary	+
$K^+\Lambda^0$	transv. asym. $A_{K^+\Lambda}$	$\tilde{H}^{p \to \Lambda}, \tilde{E}^{p \to \Lambda}$	required	?
$\pi\Delta$	VS x_B	$N ightarrow \Delta \ { m GPDs}$	required	?

hérmes

Exclusive Measurements at HERMES

Process	Comments	Learn about GPDs	Recoil Detector	Can Do
DVCS BCA	unique !	D-term desirable (but n/a)		++
DVCS BSA	vs x_B, t	constrain H^u	desirable	++
$\Delta DVCS$	first measurement	$N \to \Delta \text{ GPDs}$	required	?
$\sigma_L(ho^0,\phi^0)$	vs Q^2	quarks/gluons	not necessary	++
$\sigma_L(\omega^0, \rho^+)$	vs Q^2	quarks/gluons	not necessary	+
$ ho:\omega:\phi$	cross.sec. ratio	H, E flavours	not necessary	+
$ ho^0, \phi^0 \; SDME$	vs t	comp. GPD model	not necessary	++
$\sigma_L(\pi^+)$	VS x_B	$\stackrel{\sim}{H^u}-\stackrel{\sim}{H^d}$	not necessary	++
$\pi^+:\pi^0:\eta$	cross.sec. ratio	\tilde{H},\tilde{E} flavours	not necessary	+
$K^+\Lambda^0$	transv. asym. $A_{K^+\Lambda}$	$\tilde{H}^{p \to \Lambda}, \tilde{E}^{p \to \Lambda}$	required	?

 $N \rightarrow \Delta \text{ GPDs}$

required

VS x_B

 $\pi\Delta$

DVCS Beam Charge Asymmetry

- GPD *H* dominates, $\stackrel{\sim}{H}$ and *E* suppressed [Goeke et al. PPNP 47(2001)401]
- t-dependence can distinguish different GPD model versions.
- More background in higher t-bins.
- 25x e^{-1} statistics !
- A-D Curves from code by VGG for HERMES kinematics.

DVCS Beam Spin Asymmetry

- $H_u(x = \xi, \xi, t)$ (model depedent)
- GPD models
 distinguishable via
 t-dependence
- 1996-2000: $P_B \approx 55\%$ 2002-2007: $P_B \approx 35\%$
- Statistics marginal for 2-dim dependences.
- A-E Curves from code by VGG for HERMES kinematics.

ρ^0 Spin Density Matrix Elements

 ρ^0 Rest Frame

 SDMEs from maximum likelihood fit minimising difference between 3-dim. (cos Θ, φ, Φ) decay angle matrix and fully reconstructed high statistics Monte Carlo data set.

- 15 'unpolarised' SDMEs,
 8 'polarised' SDMEs (require beam polarisation)
- For SDME definitions see

[Schilling,Wolf Nucl.Phys.B61(1973)381].

Spin Density Matrix Elements for ρ^0/ϕ^0

hermes

Spin Density Matrix Elements for ρ^0/ϕ^0

hermes

SDMEs *t*-Dependence

 GPD-based model for t-dependence [Goloskokov,Kroll,
 EPJ C 42 (2005) 02298]

- Model for $Q^2 > 3$ GeV², 2-gluon exchange only.
- 2-quark exchange being incorporated.
- Projections A.Borissov.

Exclusive π^+ -Cross-Section

- Access to polarised GPDs H, E
- Improve errors at higher Q^2
- Projection
 C.Hadjidakis
- L/T separation at HERMES not possible $\sigma_{tot} = \sigma_T + \epsilon \sigma_L$ (0.8< ϵ <0.96)
- σ_T suppressed by $1/Q^2$
 - $\Rightarrow \sigma_L$ dominates at higher Q^2

Summary

- HERMES is playing a pioneering role exploring the potential of exclusive photon/meson production in the context of Generalised Parton Distributions.
- The new Recoil Detector, combined with an unpolarised target, is expected to lead to significant improvements of both statistics and systematics in exclusive measurements at HERMES.
- In the last year of data taking 2006/7 HERMES is expecting to take about as much data as in the 10 years before.

R.Kaiser - HERMES Future - p.21/26

Recoil Detector - Kinematics

DVCS Asymmetries

Beam Spin
$$A_{LU}(\phi) = \frac{d\sigma^{\uparrow}(\phi) - d\sigma^{\downarrow}(\phi)}{d\sigma^{\uparrow}(\phi) + d\sigma^{\downarrow}(\phi)} \propto \sin \phi \Rightarrow \Im\mathfrak{m}(H)$$

Beam Charge $A_{ch}(\phi) = \frac{d\sigma^{+}(\phi) - d\sigma^{-}(\phi)}{d\sigma^{+}(\phi) + d\sigma^{-}(\phi)} \propto \cos \phi \Rightarrow \mathfrak{Re}(H)$

SDMEs *t***-Dependence**: r_{00}^5

R.Kaiser - HERMES Future - p.24/26

 Q^2 -Dependence of R = σ_L/σ_T

Exclusive Pion-Pair Production

