Single-spin asymmetry from pomeron-odderon interference

Matti Järvinen, University of Helsinki

2nd Workshop on the QCD Structure of the Nucleon June 15, 2006

> Work in progress with Paul Hoyer (University of Helsinki and Nordita)

Outline

- □ Experimental data of transverse single-spin asymmetry (SSA) in $p^{\uparrow}p \rightarrow \pi X \rightarrow$ Motivation for our model
- $\hfill \square$ Perturbative model with soft gluon exchange \rightarrow dynamics of the process
- Model with Pomeron-odderon interference and results
 Conclusion

Experimental results for $p^{\uparrow}p \rightarrow \pi(k_{\perp})X$: E704

FNAL-E704 data (\sqrt{s} = 20GeV, k_{\perp} ~1-2GeV):

□ Large transverse asymmetries, up to \sim 40 % for very high $x_F = p_{\pi}/p_{\rm LAB} \sim 0.85$

lacksquare SSA seems to increase with k_{\perp}

 $\square \pi^+ \text{ and } \pi^- \text{ distributions mirror symmetric}$

$$A_N \equiv \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

Motivation

Experiments \rightarrow SSA large at very large $x_F \sim 0.8$

- □ Within factorization the quark that comes from the projectile proton and forms the pion needs to have large $x, z \sim 0.9$
- Physics at large x_F involves the full (multiquark) projectile wave function
- □ Single quark factorization fails for $k_{\perp}^2 \rightarrow \infty$ with $k_{\perp}^2 (1 x_F)$ fixed
- Multiquark effects studied and seen previously in (unpolarized) Drell-Yan [Berger & Brodsky, PRL42(1979)940]

[Conway *et al.*, PRD39(1989)92]

Work (in progress): dynamics of $p^{\uparrow}p \rightarrow \pi(\mathbf{k}_{\perp})X$

Dynamical origin of SSA in $p^{\uparrow}p \; o \; \pi(k_{\perp})X$

 \rightarrow use a perturbative model

Soft scattering between the target and projectile systems, high k_{\perp} from gluon emission, $E_{CM} \gg k_{\perp} > \Lambda_{\rm QCD}$

$$A_N \sim \sum_{\{\sigma\}} \operatorname{Im}[\mathcal{M}_{+\{\sigma\}}\mathcal{M}_{-\{\sigma\}}^*]$$

 \Rightarrow Spin flip and

helicity dependent phase needed

Two gluon exchange \leftrightarrow Pomeron (imaginary) One gluon exchange \leftrightarrow Odderon (real)

Pauli coupling (the blob) to flip spin

Our dynamics compared to Sivers effect

Different dynamical origin:

Sivers effect: Soft rescattering with the projectile spectators

Our study: Soft rescattering with the (unpolarized) target spectators

 \Rightarrow Target dependence?

Our dynamics demands spin flip rescattering. Non flip (Coulomb) rescattering gives a helicity independent phase $\Rightarrow A_N = 0$

Pomeron-odderon interference

From perturbative model:

□ Spin-flip in soft scattering needed for helicity dependent phase

□ Resolution effect: very soft scattering unable to resolve gluon emission \rightarrow suppression by $p_{\perp}^{\text{soft}}/k_{\perp}$ (at fixed x_F)

 \longrightarrow Simple model

Regge amplitudes for the pomeron and spin flip odderon exchanges with a 90° phase difference

$$\mathcal{M}^{\mathbb{P}/\mathbb{O}} \sim e^{bt} \left(\frac{s}{s_0}\right)^{\alpha}$$

Gluon emission vertex using perturbation theory

Matti Järvinen

Results

$$A_N \simeq \frac{2(a_0 k_\perp) x_F}{1 + x_F^2}$$

for small ratio of the odderon and pomeron amplitudes $\sim a_0 k_{\perp}$ (here $a_0 \sim$ strength of the spin-flip coupling)

Comparison to E704 π^+ data with pomeron/odderon exchange only (numerical integration over soft momenta)

Proof of principle that
$$A_N \neq 0$$
 is possible

Conclusion

- \Box Multiquark effects arise at $k_{\perp}^2 (1 x_F)$ fixed
- □ Rescattering from (unpolarized) target spectators can contribute to A_N
- Pomeron-odderon interference can produce a spin-flp and a phase difference, necessary to have $A_N \neq 0$

Experimental results...

Recent result from STAR $(\sqrt{s} = 200 \text{ GeV})$: the asymmetry persists when energy is increased [PRL92(2004)171801] \Box SSA observed at large k_{\perp} in $pp \rightarrow \Lambda^{\uparrow} X$ already in the 80's [Lundberg et al., PRD40(1989)3557]

 k_{\perp} dependence of E704 data

SSA smaller for $k_{\perp} < 0.7 {
m GeV}$ than for $k_{\perp} > 0.7 {
m GeV}$

Details of pomeron-odderon interference

We define, e.g.,

Taking $lpha_{\mathbb{P}}=1$ (due to the resolution effect), and $k_{\perp}\gg q_{\perp}$

$$\mathcal{M}_{++\lambda}^{\mathbb{P}} \simeq i\lambda x_F^{(1-\lambda)/2} e^{\sqrt{2x_F}(1-x_F)} e^{bt} \frac{s}{s_0} \frac{q_{\perp} e^{i\phi\lambda}}{k_{\perp}^2 e^{2i\varphi\lambda}}$$
$$\mathcal{M}_{+-\lambda}^{\mathbb{O}} \simeq -\lambda e a_0 \sqrt{\frac{2}{x_F}} q_{\perp} e^{i\phi} e^{bt} \left(\frac{s}{s_0}\right)^{\alpha_{\mathbb{O}}} \frac{x_F^{(3+\lambda)/2} - x_F^{\alpha_{\mathbb{O}} + (1-\lambda)/2}}{k_{\perp} e^{i\varphi\lambda}}$$

so that

$$A_N \simeq -\frac{2k_{\perp}a_0 \left(\frac{s}{s_0}\right)^{\alpha_{\mathbb{O}}-1} (1-x_F)(x_F^{\alpha_{\mathbb{O}}}-x_F^2)}{(1-x_F)^2 (1+x_F^2) + \left[a_0 \left(\frac{s}{s_0}\right)^{\alpha_{\mathbb{O}}-1}\right]^2 k_{\perp}^2 \left[(x_F^{\alpha_{\mathbb{O}}-1}-x_F)^2 + (1-x_F^{\alpha_{\mathbb{O}}})^2\right]} = -\frac{2a_0 k_{\perp} x_F}{1+x_F^2 + 2a_0^2 k_{\perp}^2}$$

Matti Järvinen

 $| q \rangle$

 \mathbb{P}/\mathbb{O}