Status of Unpolarized Fragmentation Functions

Simon Albino

simon@mail.desy.de

II. Institute for Theoretical Physics (DESY) University of Hamburg, Germany

Global Analyses of Unpolarized FFs

- Light charged hadrons (l.c.h.) π^{\pm} , K^{\pm} , p/\bar{p}
- Σ Hadron (quark) spins and charge

Most recent are

Kniehl-Kramer-Pötter (2000)

$$D_u^{\pi^{\pm}}(x, M_0) = D_d^{\pi^{\pm}}(x, M_0)$$
$$D_u^{K^{\pm}}(x, M_0) = D_s^{K^{\pm}}(x, M_0)$$
$$D_u^{p/\overline{p}}(x, M_0) = 2D_d^{p/\overline{p}}(x, M_0)$$

Albino-Kniehl-Kramer (2005)

- Update of KKP
- $D_{u,d,s}^h$ from OPAL tagging probabilities
- Also for K_0^S , Λ

Since 2000, l.c.h. studies also from

- Bourhis, Fontannaz, Guillet, Werlen (charged)
- Kretzer (π^{\pm} , K^{\pm} , charged)

Data

Rely mostly on $e^+ + e^- \rightarrow Z, \gamma \rightarrow X + h(=h^+ + h^-)$

- *h* identified
- Aleph, delphi, sld ($\sqrt{s} = 91 \text{ GeV}$), tpc (29 GeV) (uds, c, b)
- OPAL tagging probabilities ($\sqrt{s} = 91 \text{ GeV}$) (u, d, s, c, b)

OPAL data rather model independent Primary quark info by tagging high energy hadrons Excluded in AKK:

- h unidentified (contaminated with other charged particles) use for checking
- $x_p < 0.1$ (soft gluon logarithms)

Calculation

Factorization theorem I Factorization theorem II $(e^+e^- \rightarrow \text{parton } i \rightarrow h)$ (DGLAP evolution) $\frac{d\sigma^h}{dx_n}(x_p,s) = \sum_i \int_{x_n}^1 \frac{dy}{y} \qquad \frac{d}{d\ln M_f} D_i^h(x,M_f) = \sum_j \int_x^1 \frac{dy}{y}$ $\frac{d\sigma^i}{d(x_n/y)}\left(\frac{x_p}{y}, M_f, s\right) D_i^h(y, M_f) \qquad P_{ij}\left(\frac{x}{y}, a_s(M_f)\right) D_j^h(y, M_f)$ Neglect $O(1/\sqrt{s})$ higher twist $D_i^h(x, M_f)$ are universal Work to NLO, freedoms:

- Scale: $\mu = M_f = \sqrt{s}$
- Scheme: $\overline{\mathrm{MS}}$
- $D_q^h(x, M_f < 2m_q) = 0$

$$D_{q=\bar{q},g}^{h}(x, M_0 = \sqrt{2} \text{ GeV}) = N x^{\alpha} (1-x)^{\beta}$$

$\alpha_s(M_Z)$ Determination

Experimental errors Vary $\alpha_s(M_Z)$ until $\Delta \chi^2_{\rm DF} = 1$ Theoretical errors Fits with $\frac{M_f}{\sqrt{s}} = \frac{1}{2}, 2$

AKK

KKP

$$\alpha_s(M_Z) = 0.1176^{+0.0053(E)+0.0007(T)}_{-0.0067(E)-0.0009(T)}$$

= 0.1176^{+0.0053}_{-0.0068} \qquad \alpha_s(M_Z) = 0.1170^{+0.0058}_{-0.0073}

PDG: $\alpha_s(M_Z) = 0.1187 \pm 0.002$

Inclusive hadroproduction data sensitive to $\alpha_s(M_Z)$

S. Albino (Hamburg University)

OCD-N'06, Frascati

Status of Unpolarized FFs – p. 5/16

OPAL tagging probabilities

G. Abbiendi et al., Eur. Phys. J. C 16 (2000) 407

This framework: OPAL low x + heavy quark \nleftrightarrow other data

S. Albino (Hamburg University)

Light charged hadron data

Light charged hadron data

ALEPH, OPAL summed l.c.h. data overshoot (see KKP work) \rightarrow These data may contain other charged particles

S. Albino (Hamburg University)

Gluon sensitivity Not included in fit

S. Albino (Hamburg University)

OCD-N'06, Frascati

Status of Unpolarized FFs – p. 10/16

Decaying to charged particles \rightarrow production observable Previous determinations by

- K_S^0 : Greco, Rolli HERWIG (1995)
- Λ: de Florian, Stratmann, Vogelsang (1998); Bourrely, Soffer (2003)

New n.w.h. data from STAR@RHIC merits improved FFs

S. Albino (Hamburg University)

K_S^0 , Λ - **OPAL tagging probabilities**

Data quality: n.w.h. < l.c.h.

- Fix $\alpha_s(M_Z) = 0.1176$ (AKK central value)
- Fix gluon FF (see later slide)

S. Albino (Hamburg University)

Again, separate u, d, s with OPAL tagging probabilities

Low x + heavy quark data: good fit (in contrast to l.c.h. data)

A, large x: $s, c \gg u, d, b$

 $\begin{array}{l} \Lambda \text{ implicitly contains} \\ \text{parton} \rightarrow \Sigma^0 \rightarrow \Lambda \end{array}$

K^0_S , Λ - quark tagging

K_S^0, Λ - untagged

Summary

AKK: Includes OPAL tagging probabilities $\rightarrow g, u, d, s, c, b$ for $\pi^{\pm}, K^{\pm}, p/\overline{p}, K_S^0, \Lambda$ for first time Sensible result for $\alpha_s(M_Z)$

AKK l.c.h., compared to KKP:

- Smaller $d \to K^{\pm}$, larger $s \to K^{\pm}$
- Better agreement with K_S^0 @STAR, worse with K_S^0 @UA1 AKK n.w.h.:
 - $K_S^0 \simeq \text{GR's}$ $K_S^0 @$ STAR good, $K_S^0 @$ UA1 not
 - $s, c \rightarrow \Lambda \gg FSV$'s $\Lambda @STAR+UA1 \text{ good}$

http://www.desy.de/ simon/AKK2005FF.html Simple to make KKP \rightarrow AKK update to software

S. Albino (Hamburg University)