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This talk: Discusses methods

Next talk: Phillip Hägler talks about results.
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Introduction

Lattice Theory

Finding hadron propagators and masses

Finding forward matrix elements (eg structure functions)

Non-forward matrix elements (GPD)

Extrapolations

Conclusions
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What is lattice gauge theory?

Computational field theory.
We can’t put a continuum in a computer — divide up space
and time into discrete steps (like solving a differential
equation, or doing an integral).
Discrete 4-d Euclidean lattice, lattice spacing a.
Quark fields ψ on the sites.
Gauge fields Aµ on the links.
A regularisation of field theory, preserving exact gauge
invariance.
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What is lattice gauge theory?
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What is lattice gauge theory?

Lattice gauge theory really is a first-principles calculation,
the only input is the action of QCD.
Output: masses and matrix elements.
Complications: Lack of computer power means we have to
do various extrapolations. Realistically light quarks are still
too expensive, so we have to extrapolate towards the
physical u and d masses.
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Path Integral

We want to “measure”

〈F 〉 =
1

Z

∫

dA dψ dψ̄ F (A,ψ, ψ̄)e−Sg(A)−ψ̄Mf (A)ψ

The action is bilinear in the fermion field – we can do the
fermionic integral analytically. (Fortunate, because it avoids
the issue of dealing with Grassmann quantities on the
computer).

Z =

∫

dA dψ dψ̄ e−Sg(A)−ψ̄Mf (A)ψ

=

∫

dA det(Mf (A))Nfe−Sg(A)
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We have algorithms that generate Aµ configurations with
the probability

det(Mf (A))Nfe−Sg(A) Expensive “Dynamical”

e−Sg(A) Cheap “Quenched”

Quenched is equivalent to dropping Feynman diagrams
with sea-quark loops.
The integral becomes a statistical expectation value.
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Transfer matrix decomposition

〈Q〉 =

∑

i〈i|Q|i〉e
−EiT

∑

i〈i|i〉e
−EiT

→ 〈0|Q|0〉

Like decomposing into Hamiltonian eigenstates in QM, but
because the lattice is Euclidean we have exponential
decays, not phases.
These sums look like the state sums in thermodynamics —
this is more than just an analogy, simulating on lattices with
small T allows us to find out what QCD does at finite
temperature. (Deconfinement phase transition, quark-gluon
plasma, etc.)

How to calculate GPDs on the lattice – p.10/34



Transfer matrix decomposition

Same decomposition for a two-point function.

〈A(0)B(t)〉 =

∑

i,j〈i|A|j〉〈j|B|i〉e−Ejte−Ei(T−t)

∑

i〈i|i〉e
−EiT

→ 〈0|A|j0〉〈j0|B|0〉e−Ej0
t + 〈i0|A|0〉〈0|B|i0〉e

−Ei0
(T−t)

Measure energy relative to vacuum, so 〈0|0〉e−E0T → 1.
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Two point functions

Baryon propagator in terms of the transfer matrix:

〈B(t) B̄(0)〉 = Tr
[

e−H(T−t)Be−HtB̄
]

T is the lattice length, t is the separation of the operators.
Introduce a complete set of states

〈B(t) B̄(0)〉 =
∑

i,j

e−Ei(T−t)〈i|B|j〉e−Ejt〈j|B̄|i〉
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Two point functions

When T, t are both large, the lowest energy states
dominate the sum

e−EN t〈0|B|N〉〈N |B̄|0〉 + e−EN?(T−t)〈N?|B̄|0〉〈0|B|N?〉

The propagator decay rate gives the baryon energy (mass,
dispersion relation, check of restoration of Lorentz
invariance).

How to calculate GPDs on the lattice – p.13/34



1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30

pr
op

ag
at

or

t

Nucleon N?

How to calculate GPDs on the lattice – p.14/34



Three-point functions

Follow the same argument for the forward expectation value

〈B(t) O(τ) B̄(0)〉

= Tr
[

e−H(T−t)Be−H(t−τ)Oe−Hτ B̄
]

The dominant contribution when 0 � τ � t� T is again
given by the lowest energy state

e−EN t〈0|B|N〉〈N |O|N〉〈N |B̄|0〉

The three point function is proportional to the interesting
quantity 〈N |O|N〉, but we need to remove the other factors
which multiply it.
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Three-point functions

e−EN t〈0|B|N〉〈N |O|N〉〈N |B̄|0〉

Comparing this with the expression for the two-point
function.

e−EN t〈0|B|N〉〈N |B̄|0〉

We see that the ratio three-point/two-point gives 〈N |O|N〉,
independent of τ .
If we don’t have 0 � τ � t� T (all operators separated by
large times) there will still be contrbutions from excited
states, plateau won’t be perfect.
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Three-point functions

Net momentum transfer ∆ = q′ − q = p′ − p.

On the lattice we can get some information on the GPDs by
measuring Generalised Form Factors (GFFs).
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Three-point functions

Form factor using (eg)
(

i

2

)n

ψ̄γµ1
D
↔

µ2
· · ·D

↔

µn
ψ

symmetrised and made traceless.
Moments of GPDs from operator insertions with momentum
transfer.
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Three-point functions

〈B(t, ~p′) O(τ, ~∆) B̄(0, ~p)〉

= Tr
[

e−H(T−t)Be−H(t−τ)Oe−Hτ B̄
]

We can calculate three-point functions with momentum
transfer ~∆ at the operator. The operator changes a proton
with momentum ~p into one with 3-momentum ~p′ ≡ ~p+ ~∆.
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Three-point functions

〈B(t, ~p′) O(τ, ~∆) B̄(0, ~p)〉

= Tr
[

e−H(T−t)Be−H(t−τ)Oe−Hτ B̄
]

We choose 3-momenta, 4th component is fixed by
kinematics (energy of a proton of given momentum).
Since this usually means that the scattered proton has a
different energy from the incoming proton, the non-forward
three-point function has a more complicated dependence
on the times t and τ , and it isn’t quite as easy to remove all
the external factors to leave the matrix element alone.

How to calculate GPDs on the lattice – p.20/34



Three-point functions

C2pt(t, ~p) = 〈B(t, ~p)B̄(0, ~p)〉 ≈ A2(~p)e−Ept

C3pt(t, ~p′, ~p) = 〈B(t, ~p′) O(τ, ~∆) B̄(0, ~p)〉

≈ A(~p′)e−Ep′(t−τ)〈N(~p′)|O|N(~p)〉e−EpτA(~p)

Can we combine 2pt functions to cancel the amplitudes and
exponentials, and just get the matrix element?
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Three-point functions

C3pt(t, ~p′, ~p) ≈ A(~p′)e−Ep′(t−τ)〈N(~p′)|O|N(~p)〉e−EpτA(~p)

C2pt(t, ~p) ≈ A2(~p)e−Ept

[

C2pt(t, ~p′)C2pt(t, ~p)
]

1

2

[

C2pt(τ, ~p)C2pt(t− τ, ~p′)

C2pt(τ, ~p′)C2pt(t− τ, ~p)

]
1

2

≈ A(~p′)e−Ep′(t−τ)e−EpτA(~p)

Exactly the factor needed to extract the matrix element.
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Plateau

C2pt factors should cancel t and τ dependence, leaving a
plateau.

hep-lat/0304018 LHPC and SESAM
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Three-point functions
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Three-point functions

τ

t 0

N N

τ

t 0

N N

Two terms. “Quark line disconnected” only contributes for
flavour singlet operators. Hard to measure. Under
renormalisation mixes with gluonic operators (which are
also hard to measure). Usually we make our lives easy by
concentrating on non-singlet quantities.
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Operator Product Expansion (OPE)

We can relate the moments of structure functions (both
polarised and unpolarised) to the expectation values of
matrix elements via the OPE.

∫ 1

0
dx xn−2F2(x,Q

2) =
∑

f

c
f
2,n(Q

2, µ2)vfn(µ
2)

The Wilson coefficients cf can be found perturbatively if Q2,
µ2 are large enough. Lattice QCD offers a method of finding
the reduced matrix elements vf .
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Typical operator

(

i

2

)n

ψ̄γµ1
γ5D

↔

µ2
· · ·D

↔

µn
ψ

symmetrised and made traceless.
Add momentum transfer: Get form factors and generalised
parton distributions.
Covariant derivatives replaced by finite differences to
produce lattice operators.
This is a source of discretisation error, a2∆2.
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Systematic Issues

Lattice spacing a. Extrapolate towards a→ 0.

Lattice volume: Much bigger than proton.

Quark mass: At present lattice quarks are too heavy
(computer cost).

Renormalisation (improve on pert theory?)
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Extrapolating in mq

To keep down the cost of calculation, and to minimise the
effects of calculating on a finite size lattice, calculations
have to be done at a rather large quark mass ( mq ≈ ms).
We then have to extrapolate to the physical mu, md.
How?
Simplest hypothesis: Everything is linear in mq (or
equivalently m2

π).
This usually fits the data reasonably well.
More sophisticated idea - use formulae from chiral
perturbation theory (or quenched chiral perturbation
theory). Negele hep-lat/0107010; Detmold et al.
hep-lat/0108002
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Extrapolating in mq
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Extrapolating in mq

How far should one-loop results apply? (Folklore - up until
mps = mK ? )
Variants of chiral perturbation theory.
Typical Issues: Cut offs. Inclusion of ∆ baryon. Multitude of
coupling constants.
Someday we will bypass this by calculating with realistic
quark masses.
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Conclusions

Lattice methods allow first principles calculation of
hadronic matrix elements.

Disconnected contributions hard to measure.

Extrapolation still needed to reach physical mu and md.
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Time for easy questions
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Time for easy questions

(Save hard questions for the next speaker).
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