Hadron Tomography

Matthias Burkardt

burkardt@nmsu.edu

New Mexico State University Las Cruces, NM, 88003, U.S.A.

Outline

- GPDs: probabilistic interpretation as Fourier transforms of impact parameter dependent PDFs
 - $E(x,0,-\boldsymbol{\Delta}_{\perp}^2)$
 - $\hookrightarrow \bot$ deformation of unpol. PDFs in \bot pol. target
 - physics: orbital motion of the quarks
 - → Sivers effect
 - $2\tilde{H}_T + E_T \longrightarrow \bot$ deformation of \bot pol. PDFs in unpol. target
 - correlation between quark angular momentum and quark transversity
 - \hookrightarrow Boer-Mulders function $h_1^{\perp}(x, \mathbf{k}_{\perp})$
 - $ightharpoonup N_C \longrightarrow \infty$
- Summary

Impact parameter dependent PDFs

define \(\perp \) localized state [D.Soper,PRD15, 1141 (1977)]

$$|p^+, \mathbf{R}_\perp = \mathbf{0}_\perp, \lambda\rangle \equiv \mathcal{N} \int d^2 \mathbf{p}_\perp |p^+, \mathbf{p}_\perp, \lambda\rangle$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has

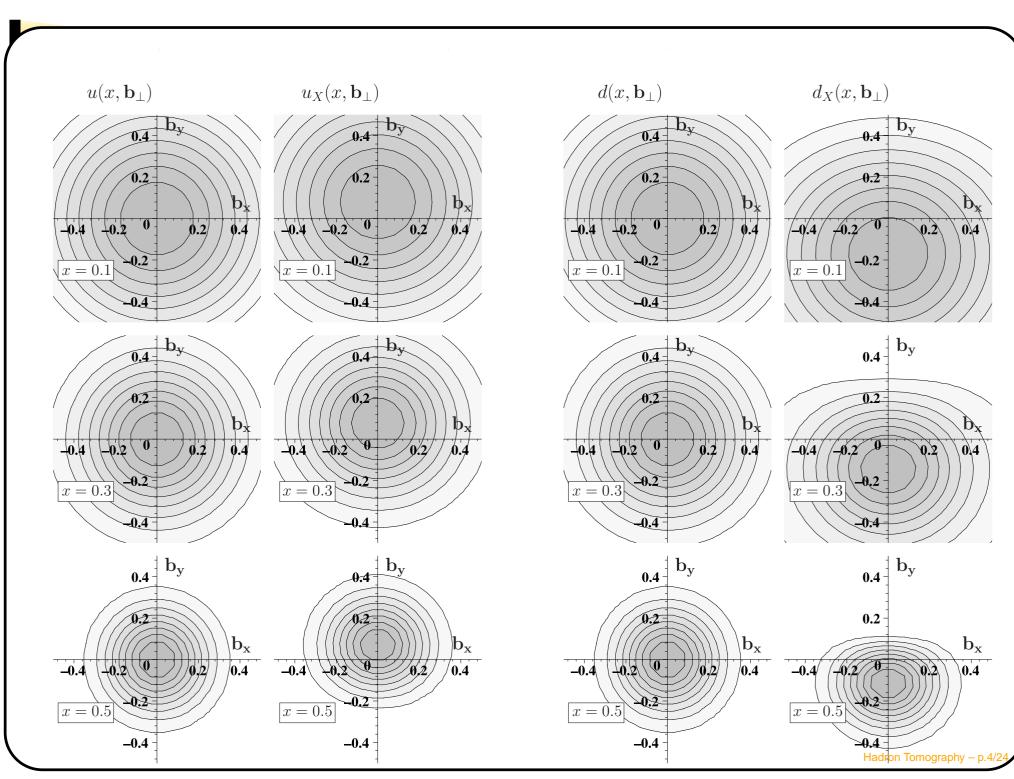
$$\mathbf{R}_{\perp} \equiv \frac{1}{P^{+}} \int dx^{-} d^{2}\mathbf{x}_{\perp} \, \mathbf{x}_{\perp} T^{++}(x) = \sum_{i} x_{i} \mathbf{r}_{i,\perp} = \mathbf{0}_{\perp}$$

(cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

$$q(x, \mathbf{b}_{\perp}) \equiv \int \frac{dx^{-}}{4\pi} \langle p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} | \bar{q}(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{b}_{\perp}) | p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} \rangle e^{ixp^{+}x^{-}}$$

$$\begin{array}{ccc}
& q(x, \mathbf{b}_{\perp}) &= \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i\mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H(x, 0, -\mathbf{\Delta}_{\perp}^2), \\
& \Delta q(x, \mathbf{b}_{\perp}) &= \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i\mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} \tilde{H}(x, 0, -\mathbf{\Delta}_{\perp}^2),
\end{array}$$



Transversely Deformed Distributions and $E(x,0,-{f \Delta}_{\perp}^2)$

M.B., Int.J.Mod.Phys.A18, 173 (2003)

So far: only unpolarized (or long. pol.) nucleon! In general ($\xi = 0$):

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \langle P + \Delta, \uparrow | \bar{q}(0) \gamma^{+} q(x^{-}) | P, \uparrow \rangle = H(x, 0, -\boldsymbol{\Delta}_{\perp}^{2})$$

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \langle P + \Delta, \uparrow | \bar{q}(0) \gamma^{+} q(x^{-}) | P, \downarrow \rangle = -\frac{\Delta_{x} - i\Delta_{y}}{2M} E(x, 0, -\boldsymbol{\Delta}_{\perp}^{2}).$$

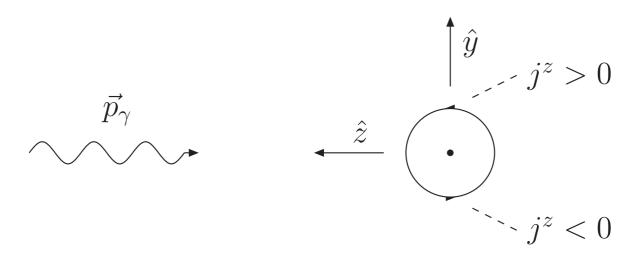
- Consider nucleon polarized in x direction (in IMF) $|X\rangle \equiv |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \uparrow\rangle + |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \downarrow\rangle.$
- → unpolarized quark distribution for this state:

$$q(x, \mathbf{b}_{\perp}) = \mathcal{H}(x, \mathbf{b}_{\perp}) - \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} E(x, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

▶ Physics: $j^+ = j^0 + j^3$, and left-right asymmetry from j^3 ! [X.Ji, PRL **91**, 062001 (2003)]

Intuitive connection with \vec{L}_q

- Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates \hat{z} -axis in direction of the momentum transfer) the virtual photons "see" (in the Bj-limit) only the $j^+ = j^0 + j^z$ component of the quark current
- If up-quarks have positive orbital angular momentum in the \hat{x} -direction, then j^z is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side



Intuitive connection with $ec{L}_q$

- Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates \hat{z} -axis in direction of the momentum transfer) the virtual photons "see" (in the Bj-limit) only the $j^+ = j^0 + j^z$ component of the quark current
- If up-quarks have positive orbital angular momentum in the \hat{x} -direction, then j^z is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side
- \rightarrow j^+ is deformed not because there are more quarks on one side than on the other but because the DIS-photons (coupling only to j^+) "see" the quarks on the $+\hat{y}$ side better than on the $-\hat{y}$ side.
- $m{m{\square}} \ \perp$ deformation described by $E_q(x,0,-{m{\Delta}}_{\perp}^2)$
- \hookrightarrow not surprising to find that $E_q(x,0,-{f \Delta}_{\perp}^2)$ enters the Ji relation

$$\langle J_q^i \rangle = S^i \int dx \left[H_q(x, 0, 0) + E_q(x, 0, 0) \right] x.$$

Transversely Deformed Distributions and $E(x,0,-{f \Delta}_{\perp}^2)$

- $m{p}$ $q(x, \mathbf{b}_{\perp})$ in \perp polarized nucleon is deformed compared to longitudinally polarized nucleons!
- ightharpoonup mean \perp deformation of flavor q (\perp flavor dipole moment)

$$d_y^q \equiv \int dx \int d^2 \mathbf{b}_{\perp} q_X(x, \mathbf{b}_{\perp}) b_y = \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{\kappa_q^p}{2M}$$

with
$$\kappa_{u/d}^p \equiv F_2^{u/d}(0) = \mathcal{O}(1-2) \quad \Rightarrow \quad d_y^q = \mathcal{O}(0.2fm)$$

ullet simple model: for simplicity, make ansatz where $E_q \propto H_q$

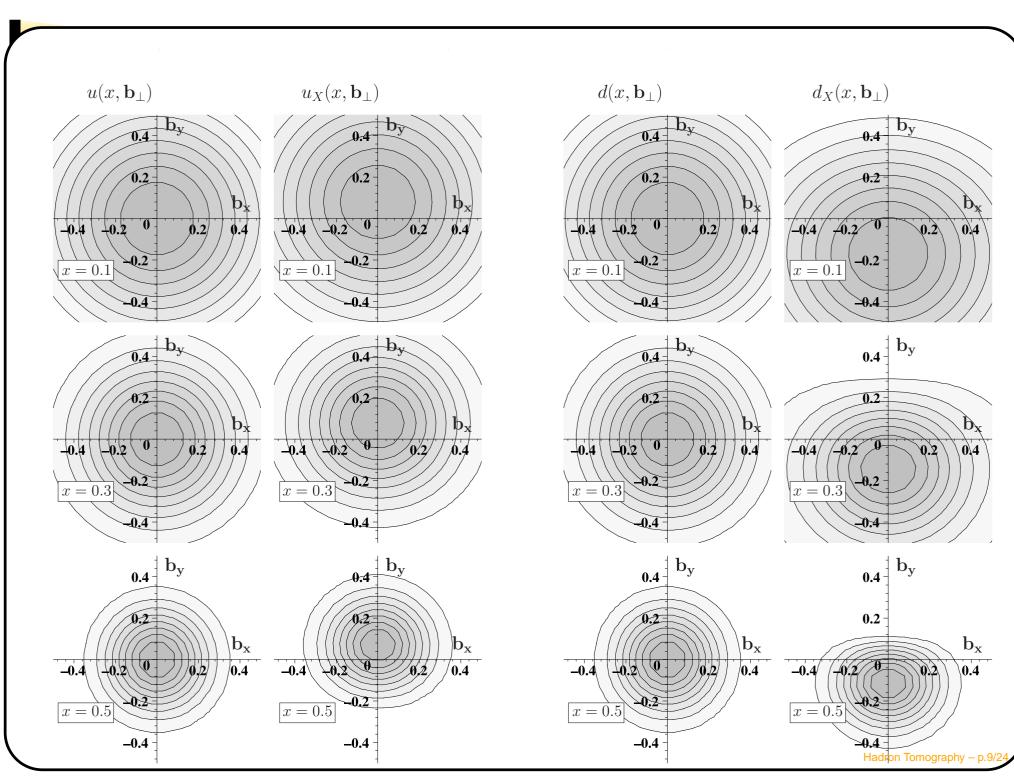
$$E_u(x, 0, -\boldsymbol{\Delta}_{\perp}^2) = \frac{\kappa_u^p}{2} H_u(x, 0, -\boldsymbol{\Delta}_{\perp}^2)$$

$$E_d(x, 0, -\boldsymbol{\Delta}_{\perp}^2) = \kappa_d^p H_d(x, 0, -\boldsymbol{\Delta}_{\perp}^2)$$

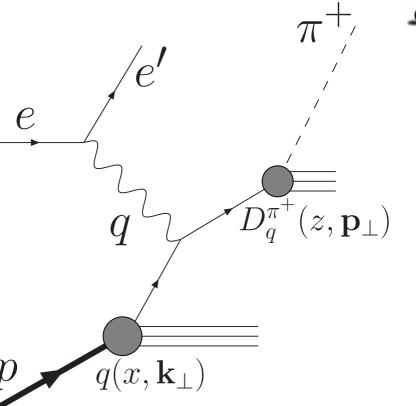
with
$$\kappa_u^p=2\kappa_p+\kappa_n=1.673$$

$$\kappa_d^p=2\kappa_n+\kappa_p=-2.033.$$

■ Model too simple but illustrates that anticipated deformation is very significant since κ_u and κ_d known to be large!



SSA $(\gamma + p \uparrow \longrightarrow \pi^+ + X)$



- use factorization (high energies) to express momentum distribution of outgoing π^+ as convolution of
 - momentum distribution of quarks in nucleon
 - \hookrightarrow unintegrated parton density $f_{q/p}(x, \mathbf{k}_{\perp})$
 - momentum distribution of π^+ in jet created by leading quark q
 - \hookrightarrow fragmentation function $D_q^{\pi^+}(z,\mathbf{p}_{\perp})$

- average ⊥ momentum of pions obtained as sum of
 - average k_{\perp} of quarks in nucleon (Sivers effect)
 - average \mathbf{p}_{\perp} of pions in quark-jet (Collins effect)

$GPD \longleftrightarrow SSA (Sivers)$

Sivers: distribution of unpol. quarks in \perp pol. proton

$$f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}) = f_1^q(x, \mathbf{k}_{\perp}^2) - f_{1T}^{\perp q}(x, \mathbf{k}_{\perp}^2) \frac{(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}) \cdot S}{M}$$

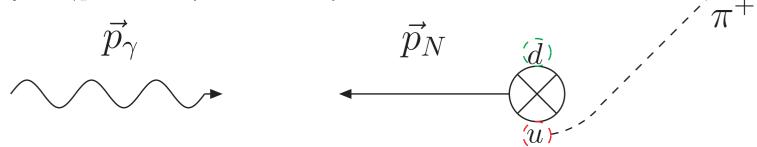
- ullet without FSI, $\langle {f k}_{\perp} \rangle = 0$, i.e. $f_{1T}^{\perp q}(x,{f k}_{\perp}^2) = 0$
- with FSI, $\langle \mathbf{k}_{\perp} \rangle \neq 0$ (Brodsky, Hwang, Schmidt)
- ▶ FSI formally included by appropriate choice of Wilson line gauge links in gauge invariant def. of $f_{q/p}(x, \mathbf{k}_{\perp})$
- → Qiu, Sterman; Collins; Ji; Boer et al.;..

$$\langle \mathbf{k}_{\perp} \rangle \sim \left\langle P, S \left| \bar{q}(0) \gamma^{+} \int_{0}^{\infty} d\eta^{-} G^{+\perp}(\eta) q(0) \right| P, S \right\rangle$$

- $\int_0^\infty d\eta^- G^{+\perp}(\eta)$ is the \perp impulse that the active quark acquires as it moves through color field of "spectators"
- What should we expect for Sivers effect in QCD?

$GPD \longleftrightarrow SSA (Sivers)$

• example: $\gamma p \to \pi X$ (Breit frame)



- u,d distributions in \bot polarized proton have left-right asymmetry in \bot position space (T-even!); sign "determined" by κ_u & κ_d
- attractive FSI deflects active quark towards the center of momentum
- \hookrightarrow FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$ -direction into momentum asymmetry that favors $-\hat{y}$ direction
- \hookrightarrow correlation between sign of κ_q and sign of SSA: $f_{1T}^{\perp q} \sim -\kappa_q$
- $f_{1T}^{\perp q} \sim -\kappa_q$ consistent with HERMES results

Chirally Odd GPDs

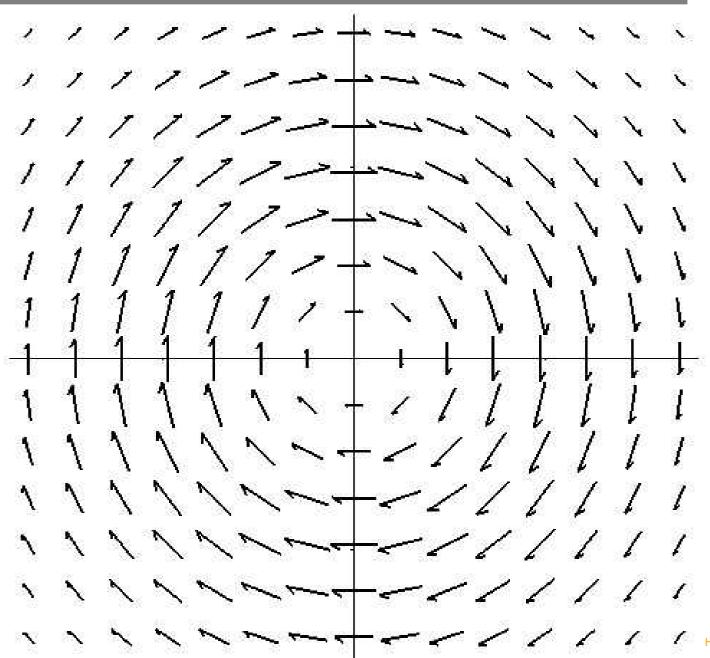
$$\int \frac{dx^{-}}{2\pi} e^{ixp^{+}x^{-}} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \sigma^{+j} \gamma_{5} q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = H_{T} \bar{u} \sigma^{+j} \gamma_{5} u + \tilde{H}_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} \Delta_{\alpha} P_{\beta}}{M^{2}} u + E_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} \Delta_{\alpha} \gamma_{\beta}}{M} u + \tilde{E}_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} P_{\alpha} \gamma_{\beta}}{M} u$$

- See also M.Diehl+P.Hägler, hep-ph/0504175.
- Fourier trafo of $\bar{E}_T^q \equiv 2\tilde{H}_T^q + E_T^q$ for $\xi=0$ describes distribution of transversity for <u>unpolarized</u> target in \perp plane

$$q^{i}(x, \mathbf{b}_{\perp}) = \frac{\varepsilon^{ij}}{2M} \frac{\partial}{\partial b_{j}} \int \frac{d^{2} \mathbf{\Delta}_{\perp}}{(2\pi)^{2}} e^{i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}} \bar{E}_{T}^{q}(x, 0, -\mathbf{\Delta}_{\perp}^{2})$$

origin: correlation between quark spin (i.e. transversity) and angular momentum

Transversity Distribution in Unpolarized Target



Chirally Odd GPDs

- ${\color{blue} {\cal J}_q^x}$ diagonal in transversity (does not mix), projected with $\frac{1}{2}(1\pm\gamma^x\gamma_5)$
- → one can derive analog to Ji's sum rule (unpol. target), e.g.

$$\left\langle J_{q,+\hat{y}}^{y} \right\rangle = \frac{1}{4} \int dx \left[H_{T}^{q}(x,0,0) + \bar{E}_{T}^{q}(x,0,0) \right] x$$

 \hookrightarrow \bar{E}_T^q provides quantitative information about the correlation between quark transversity and quark angular momentum)

Boer-Mulders function

- attractive FSI expected to convert position space asymmetry into momentum space asymmetry
- \hookrightarrow e.g. quarks at negative b_x with spin in $+\hat{y}$ get deflected (due to FSI) into $+\hat{x}$ direction
- \hookrightarrow (qualitative) connection between Boer-Mulders function $h_1^{\perp}(x, \mathbf{k}_{\perp})$ and the chirally odd GPD \bar{E}_T that is similar to (qualitative) connection between Sivers function $f_{1T}^{\perp}(x, \mathbf{k}_{\perp})$ and the GPD E.
- **Boer-Mulders**: distribution of \perp **pol.** quarks in **unpol.** proton

$$f_{q^{\uparrow}/p}(x, \mathbf{k}_{\perp}) = \frac{1}{2} \left[f_1^q(x, \mathbf{k}_{\perp}^2) - \frac{h_1^{\perp q}(x, \mathbf{k}_{\perp}^2)}{M} \frac{(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}) \cdot S_q}{M} \right]$$

Transversity Distribution in Unpolarized Target

- attractive FSI expected to convert position space asymmetry into momentum space asymmetry
- \hookrightarrow e.g. quarks at negative b_x with spin in $+\hat{y}$ get deflected (due to FSI) into $+\hat{x}$ direction
- \hookrightarrow (qualitative) connection between Boer-Mulders function $h_1^{\perp}(x, \mathbf{k}_{\perp})$ and the chirally odd GPD \bar{E}_T that is similar to (qualitative) connection between Sivers function $f_{1T}^{\perp}(x, \mathbf{k}_{\perp})$ and the GPD E.
- \hookrightarrow semi-quantitative predictions for $h_1^{\perp}(x, \mathbf{k}_{\perp})$
 - sign of h_1^{\perp} opposite to sign of \bar{E}_T
 - " $rac{h_1^{\perp}}{ar{E}_T}pproxrac{f_{1T}^{\perp}}{E}$ "
- ullet use measurement of h_1^{\perp} to learn about spin-orbit correlation
- lattice (→ P.Hägler's talk):
 - $\bar{E}_T^q>0$ \Rightarrow expect $h_1^{\perp u}$ same sign as $f_{1T}^{\perp,q}$

$$\bullet \quad \bar{E}_T^q > E \quad \Rightarrow \quad \left| h_1^{\perp q} \right| > \left| f_{1T}^{\perp u} \right|$$

GPDs and SSAs @ large N_C

- ullet consider ficticious world with $N_C o \infty$, such that $g^2 N_C$ fixed
- \hookrightarrow baryons become infinitely heavy $M_B = \mathcal{O}(N_C)$, with finite size
- interaction between pair of quarks goes to zero
- → mean field approx. becomes exact
- ullet identify nucleon with spin/isospin $\frac{1}{2}$ state (consider only N_C odd)
- \hookrightarrow correlation of many spin and isospin observables as consequence of spin-flavor symmetry of large N_C baryons, (Pobylitsa et al.)

•
$$H_u(x, \xi, -\Delta_{\perp}^2) = H_d(x, \xi, -\Delta_{\perp}^2) = \mathcal{O}(N_C^2)$$

•
$$E_u(x, \xi, -\Delta_{\perp}^2) = -E_d(x, \xi, -\Delta_{\perp}^2) = \mathcal{O}(N_C^3)$$

- \hookrightarrow \bot deformation of PDFs in \bot polarized nucleon equal and opposite for u and d quarks
- \hookrightarrow equal and opposite Sivers effects for u and d, i.e. $f_{1T}^{\perp,u}=-f_{1T}^{\perp,d}$
- $\bar{E}_T^u = \bar{E}_T^d$ \Rightarrow equal BM-functions for u and d, i.e. $h_1^{\perp u} = h_1^{\perp d}$

GPDs and SSAs @ large N_C

- $N_C \to \infty$: Hartree approximation exact
- \hookrightarrow FSI depends only on position/path of active quark, but not on its flavor, spin, or x
- SSAs described by universal (spin/flavor, x indep.) function $\mathbf{I}(\mathbf{b}_{\perp}) = \mathbf{b}_{\perp} I(\mathbf{b}_{\perp}^2)$ satisfying

$$\bar{\mathbf{k}}_{\perp,q} \equiv \int d^2 \mathbf{k}_{\perp} f(x, \mathbf{k}_{\perp}) \mathbf{k}_{\perp} = \int d^2 \mathbf{b}_{\perp} \mathbf{I}(\mathbf{b}_{\perp}) q(x, \mathbf{b}_{\perp})$$

- $I(\mathbf{b}_{\perp})$ is the \perp impulse that a quark ejected from position \mathbf{b}_{\perp} aquires, due to FSI with spectators.

GPDs and SSAs @ large N_C

Boer-Mulders function

$$\int d^2 \mathbf{k}_{\perp} h_1^{\perp}(x, \mathbf{k}_{\perp}) \mathbf{k}_{\perp}^2 = \int d^2 \mathbf{b}_{\perp} \mathbf{I}(\mathbf{b}_{\perp}) \nabla_{\perp} \bar{\mathcal{E}}_T(\mathbf{b}_{\perp})$$

where
$$\bar{\mathcal{E}}_T(\mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} \bar{E}_T(x,0,\mathbf{\Delta}_{\perp}) e^{-i\mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}}$$

- possible constraint on $\bar{E}_T(x,0,\mathbf{\Delta}_\perp)$ and thus on spin-orbit correlations?
- expand $I(\mathbf{b}_{\perp}^2) = I_0 + I_2 \mathbf{b}_{\perp}^2 + ...$ with I_n universal (same for u, d, Sivers, Boer-Mulders)

$$\hookrightarrow$$

$$-\int d^2 \mathbf{k}_{\perp} f_{1T}^{\perp}(x, \mathbf{k}_{\perp}) \mathbf{k}_{\perp}^2 = I_0 E(x, 0, 0) + I_1 \left\langle \mathbf{b}_{\perp}^2(x) \right\rangle_E + \dots$$
$$-\int d^2 \mathbf{k}_{\perp} h_1^{\perp}(x, \mathbf{k}_{\perp}) \mathbf{k}_{\perp}^2 = I_0 \bar{E}_T(x, 0, 0) + I_1 \left\langle \mathbf{b}_{\perp}^2(x) \right\rangle_{\bar{E}_T} + \dots$$

Summary

- lacksquare GPDs $\stackrel{FT}{\longrightarrow}$ PDFs in impact parameter space
- **▶** $E(x, 0, -\Delta^2_{\perp}) \longrightarrow \bot$ deformation of PDFs for \bot polarized target
- origin: orbital motion of the quarks [decomposotion of quark spin (Ji relation) w.r.t. quark transversity]
- \hookrightarrow simple mechanism (attractive FSI) to predict sign of f_{1T}^q
- ${\color{red} ullet}$ distribution of \bot polarized quarks in unpol. target described by chirally odd GPD $\bar{E}_T^q=2\bar{H}_T^q+\tilde{E}_T^q$
- origin: correlation between orbital motion and spin of the quarks
- \hookrightarrow simple mechanism (attractive FSI) to predict sign of h_1^{\perp}
- or, use lensing mechanism to qualitatively "extract" \bar{E}_T^q from measurement of h_1^\perp

■ Single Spin Asymmetry (Sivers)

Naive definition of unintegrated parton density

$$f(x, \mathbf{k}_{\perp}) \propto \int \frac{d\xi^{-}d^{2}\xi_{\perp}}{(2\pi)^{3}} e^{ip\cdot\xi} \left\langle P, S \left| \bar{q}(0)\gamma^{+}q(\xi) \right| P, S \right\rangle \right|_{\xi^{+}=0}.$$

- Time-reversal invariance $\Rightarrow f(x, \mathbf{k}_{\perp}) = f(x, -\mathbf{k}_{\perp})$
- \hookrightarrow Asymmetry $\int d^2 \mathbf{k}_{\perp} f(x, \mathbf{k}_{\perp}) \mathbf{k}_{\perp} = 0$
- Same conclusion for gauge invariant definition with straight Wilson line $U_{[0,\xi]}=P\exp\left(ig\int_0^1ds\xi_\mu A^\mu(s\xi)\right)$

⊥ Single Spin Asymmetry (Sivers)

- ▶ Naively (time-reversal invariance) $f(x, \mathbf{k}_{\perp}) = f(x, -\mathbf{k}_{\perp})$
- However, including the final state interaction (FSI) results in nonzero asymmetry of the ejected quark! (Brodsky, Hwang, Schmidt)
- Gauge invariant definition requires quark to be connected by gauge link. Choice of path not arbitrary but must be chosen along path of outgoing quark to incorporate FSI

$$f(x, \mathbf{k}_{\perp}) \propto \int \frac{d\xi^{-} d^{2}\xi_{\perp}}{(2\pi)^{3}} e^{ip\cdot\xi} \left\langle P, S \left| \bar{q}(0) U_{[0,\infty]} \gamma^{+} U_{[\infty,\xi]} q(\xi) \right| P, S \right\rangle \Big|_{\xi^{+}=0}$$

with
$$U_{[0,\infty]} = P \exp\left(ig \int_0^\infty d\eta^- A^+(\eta)\right)$$

Sivers Mechanism in $A^+ = 0$ gauge

Gauge link along light-cone trivial in light-cone gauge

$$U_{[0,\infty]} = P \exp\left(ig \int_0^\infty d\eta^- A^+(\eta)\right) = 1$$

- Puzzle: Sivers asymmetry seems to vanish in LC gauge (time-reversal invariance)!
- X.Ji: fully gauge invariant definition for $P(x, \mathbf{k}_{\perp})$ requires additional gauge link at $x^- = \infty$

$$f(x, \mathbf{k}_{\perp}) = \int \frac{dy^{-}d^{2}\mathbf{y}_{\perp}}{16\pi^{3}} e^{-ixp^{+}y^{-} + i\mathbf{k}_{\perp} \cdot \mathbf{y}_{\perp}}$$

$$\times \left\langle p, s \left| \bar{q}(y)\gamma^{+} U_{[y^{-}, \mathbf{y}_{\perp}; \infty^{-}, \mathbf{y}_{\perp}]} U_{[\infty^{-}, \mathbf{y}_{\perp}, \infty^{-}, \mathbf{0}_{\perp}]} U_{[\infty^{-}, \mathbf{0}_{\perp}; 0^{-}, \mathbf{0}_{\perp}]} q(0) \right| p, s \right\rangle$$

back