Observation of a 1750 MeV/c² State in the Diffractive Photoproduction of K⁺K⁻

Ryan Mitchell FOCUS Collaboration Photon 2003. April 9, 2003

Outline

- I. Photoproduction and Spectroscopy
- II. A Short History of the Photoproduction of "Higher Mass Vectors"
 - A. "ρ'(1600)"
 - B. "ωπ⁰(1250)"
 - C. "ω(1650)"
 - D. "φ(1680)"
- III. Fermilab's FOCUS ExperimentIV. FOCUS K⁺K⁻ Results

Diffractive Photoproduction

- Unique production mechanism.
- Vector excitations? Hybrids?
- A "dearth of data."

Photoproduction of Light Mesons

- 1970's: Diffractive photoproduction of ρ , ω , and ϕ vector mesons was mostly as expected.
- Late 1970's to Mid 1980's: Results are more unclear for the photoproduction of the "vector excitations."

"ρ'(1600)" "ωπ⁰(1250)" "ω(1650)" "φ(1680)"

• Very little has been done since (with high energy photon beams).

Photoproduction since 1979

- The Ω -Photon Collaboration at CERN.
- LAMP2 at Daresbury.
- SLAC Hybrid.
- E401 at Fermilab.
- (E687 and E831 at Fermilab.)

"ρ'(1600)"

However, it is now considered to be two resonances, the $\rho(1450)$ and $\rho(1700)$.

Omega 1985

" $\omega \pi^0 (1250)$ "

Omega 1985: Full angular analysis favors 1⁺ over 1⁻.

- It now appears that this is the $b_1(1235)$.
 - The mass and width agree with the $b_1(1235)$ as it is produced in other production mechanisms.
 - The most recent angular analyses favor 1⁺.
 - No corresponding resonance has been seen in e⁺e⁻ annihilation.

"ω(1650)"

• The only published observation in photoproduction is from the Ω -photon group in 1983 in $\pi^+\pi^-\pi^0$.

- e^+e^- annihilation observes a resonance at the same mass, but it is best seen in $\omega\pi\pi$.
- Photoproduction searches in $\omega \pi \pi$ have come up empty.

"φ(1680)" or "K⁺K⁻(1750)"

- The $\varphi(1680)$ (radial excitation of the $\varphi(1020)$) has been established in $e^+e^- \rightarrow K_S K \pi$.
- Photoproduction, however, shows an enhancement in K⁺K⁻ around 1750 MeV/c², originally interpreted, erroneously, as the $\varphi(1680)$.

E401 1989 1726 ± 22 MeV

Summary of Historical Photoproduction

- ρ'(1600)
 - The "best established" of the photoproduced resonances is no longer a resonance at all.
- ωπ⁰(1250)
 - Are we photoproducing a 1^{+-} b₁(1235)?
- ω(1650)
 - Are photoproduction and e^+e^- consistent here?
- φ(1680)
 - The photoproduced enhancement in K⁺K⁻ appears to be something completely different from the $\varphi(1680)$ seen in e⁺e⁻.

Fermilab's E831/FOCUS Experiment

- Charm photoproduction experiment with over one million reconstructed D's.
- A continuation of the E687 experiment.
- In addition to charm, there is an enormous diffractive non-charm sample.

More than 2 million diffractive K⁺K⁻ pairs.

The FOCUS Photon Beam

Is the Photoproduced K⁺K⁻(1750) the $\varphi(1680)$?

• Is the mass consistent?

-- e^+e^- measures $1680 \pm 20 \text{ MeV/c}^2$

-- photoproduction finds ${\sim}1750~MeV/c^2$

- Is the K⁺K⁻/K^{*}K branching fraction consistent?
 - -- e^+e^- measures 0.07 ± 0.01
 - -- photoproduction has never seen a corresponding enhancement in K^{*}K

FOCUS Data Selection

Look at K⁺K⁻ and K_SK π samples.

- Vertex in target
- No extra reconstructed photons
- No extra reconstructed tracks
- All particles are identified by Cerenkov information
- Beam energy between 20 and 160 GeV

Initial K⁺K⁻ Sample

φ Production Characteristics

P_T and t' Spectra

The X(1750) Signal... K⁺K⁻ at High and Low P_T

Fitting the X(1750)

 $Mass(K^{+}K^{-})$ (P, < 0.15 GeV/c)

Events / 10 MeV/c² 1800 1 Using a non-relativistic 1600 Breit-Wigner and a 0.B 1400 quadratic background... 1200 0.6 Yield = $11,700 \pm 480$ 1000 $Mass = 1753.5 \pm 1.5 \pm 2.3 \text{ MeV}$ BOD 0.4 Width = $122.2 \pm 6.2 \pm 8.0$ MeV 600 400 0.2 200 0 ∟ 1.4 0 1.5 1.7 1.8 1.91.6 $Mass(K^+K^-) (GeV/c^2)$

Is the Photoproduced K⁺K⁻(1750) the $\varphi(1680)$?

• MASS

-- e^+e^- measures $1680 \pm 20 \text{ MeV/c}^2$ -- FOCUS finds $1753.5 \pm 1.5 \pm 2.3 \text{ MeV/c}^2$

K+K-/K*K BRANCHING FRACTION
-- e+e- measures K*K dominant

The $K_S K \pi$ Sample

Fitting K^{*}K

With K^{*} to K π , BF(K^{*}K/K⁺K⁻) < 0.065 at 90% C.L. With K^{*} to K_S π , BF(K*K/K⁺K⁻) < 0.183 at 90% C.L. Is the Photoproduced K⁺K⁻(1750) the $\varphi(1680)$?

• MASS

-- e^+e^- measures 1680 ± 20 MeV/c² -- FOCUS finds $1753.5 \pm 1.5 \pm 2.3$ MeV/c²

K+K-/K*K BRANCHING FRACTION
-- e+e- measures K*K dominant
-- FOCUS finds K+K- dominant

What is the $K^+K^-(1750)$?

- By CP, it must be 0⁺⁺, 1⁻⁻, 2⁺⁺, etc.
- Look at K_SK_S...
- Angular analysis...

Conclusions

Phys. Lett. B 545:50-56, 2002. Preprint: hep-ex/0208027

- The K⁺K⁻(1750) is not the $\varphi(1680)$
- The interpretation remains uncertain
- Watch for many more interesting results from photoproduction...

Production of the X(1750)

 P_{τ} and t' Spectra

The X(1750) Signal

Interference Scenarios?

Scenarios with Two Interfering Resonances

The mass never drops below 1747 MeV/c²

