Open Charm Production at HERA

Uri Karshon Weizmann Institute of Science Israel

on behalf of the H1 and ZEUS Collaborations

ZEUS

Photon 2003 Frascati, Italy

<u>OUTLINE</u>

- Introduction
- Theoretical Framework
- Charm Tagging Methods
- Charm Production: Data vs. QCD
- Charm Dijet Angular Distributions
- Charm Fragmentaion
 - Fragmentation Function
 - Fragmentation Fractions and Ratios
- Summary and Outlook

Introduction

- HERA ep collider: $e^{\pm} \Longrightarrow \Longleftarrow p$ 27.6 GeV 820 - 920 GeV $\sqrt{s} \approx 300 - 319 \ GeV$
- 2 Collider Experiments: H1, ZEUS

Open charm production at HERA:

- Hard process e.g. Boson-Gluon Fusion (BGF) $\gamma g \rightarrow c\bar{c}$
- Parton shower development

Two kinematic regimes: Hard scatter

- Deep Inelastic Scattering (DIS) $Q^2 > 1GeV^2$ Scattered e visible in main detector
- Photoproduction (PHP) $Q^2 < 1GeV^2$ $< Q^2 > \approx 3 \cdot 10^{-4}$

No scatter e in main detector \Rightarrow quasi-real γ

Theoretical Framework

Hard scale $m_c >> \Lambda_{QCD}$ \Rightarrow pQCD calculations - valid

QCD LO contributions to open c **production:**

"Direct" BGF "Resolved" photon "Charm excitation"

Next-to-Leading order (NLO) calculations: DGLAP evolution: Frixione et al. Kniehl et al. Fixed-order ("massive") Resummed ("massless") • p, γ active flavours: u,d,s u,d,s,c • Scheme valid for: $Q^2, p_\perp^2 \approx m_c^2$ $Q^2, p_\perp^2 >> m_c^2$

Matched ("FONLL") calculation: Cacciari et al. Incorporate mass effects up to NLO resummation of p_T logs up to NLL level

CASCADE MC based on **CCFM** evolution At large $x \longrightarrow \mathbf{CCFM} \longrightarrow \mathbf{DGLAP} \ Q^2$ evolution For $x \to 0$ $\mathbf{CCFM} \longrightarrow \mathbf{BFKL} \ 1/x \ \mathbf{evolution}$

Charm Tagging Methods

 $D^{*+} \to D^0 \pi_s^+ \to (K^- \pi^+) \pi_s^+ \ (+ \text{ c.c.})$ $f(c \to D^{*+}) \approx 24\%, BR = 2.6\%$ $\Delta M = M(D^{*+}) - M(D^0) = 0.14542 \text{ GeV} \sim m_{\pi}$ $P_{\perp}^{D^*} > 2 \text{ GeV and } -1.5 < \eta^{D^*} < 1.5$

In the yellow band after background subtraction:

$$N(D^{*\pm}) = 31350 \pm 240$$
 from L = 127 pb⁻¹

better than 1% stat. precision

Charm Tagging Methods

Other charm signals: $D^* \to D^0 \pi_s \to (K^- \pi^+ \pi^+ \pi^-) \pi_s$ $D^0 \to K^- \pi^+$ untagged $D^+ \to K^- \pi^+ \pi^+$ $D_s \to \phi \pi \to (K^- K^+) \pi$ s-l electrons or muons

Charm tagging via decay length Reconstruct charm hadrons via secondary vertex H1 central silicon tracker (CST): Background reduced via decay length significance $S_l = l/\sigma_l$ D^+ and untagged D^0 signals from $K^-\pi^+\pi^+$ and $K^-\pi^+$ mass distributions (DIS events 48 pb⁻¹)

No particle identification applied

D-Meson Production in DIS

Norm and shapes well described by LO+PS models (AROMA)

D^* -Meson Production in PHP

Sample: PHP events 79 pb⁻¹ Inclusive D^* with $p_T^{D^*} > 1.9 \ GeV$, $|\eta^{D^*}| < 1.6$ Kinematic region: $Q^2 < 1 \text{GeV}^2$, $130 < W_{\gamma p} < 280 \ GeV$

 $z(D^*)$: Photon energy fraction carried by D^* in p rest frame Theory bands: vary renormalisation scale, charm mass Central FO predictions below data mainly for $\eta^{D^*} > 0$, low $z(D^*)$; FONLL not better than FO High z region OK; $d\sigma/dW$ below data, shape OK

D^* -Meson Production in PHP

NLL vs. FO:

NLL uncertainties very large Significant resolved photon contribution in NLL Central NLL predictions closer to data NLL better than FO for $d\sigma/dz$ and $\eta(D^*) > 0$ Some sensitivity to γ s.f. parametrisation in NLL

D^* -Meson Production in PHP

Precise data enable measurements of double differential cross sections

Data: Close to upper band of predictions Significantly above FO, FONLL at medium $p_T^{D^*}$, forward η^{D^*} (Even upper bounds below data!)

For low $p_T^{D^*}$ FONLL predictions close to FO For large $p_T^{D^*}$ FONLL predictions below FO Challenge for theory. Need for NNLO?

enarm Eijee i notoproduction

 D^* dijet events enable study of the photon structure, in particular it's charm content 120 pb⁻¹; $Q^2 < 1 \text{GeV}^2$; $130 < W_{\gamma p} < 280 \text{ GeV}$ Require D^* with $p_T^{D^*} > 3.0 \text{ GeV}$, $|\eta^{D^*}| < 1.5$ 2 jets with $E_T^{\text{jet}} > 5 \text{ GeV}$, $|\eta^{\text{jet}}| < 2.4$, $M_{jj} > 18 \text{ GeV}$, $|\bar{\eta}| < 0.7$

Fraction of photon momentum producing the dijet:

$$x_{\gamma}^{\text{OBS}} = \frac{\sum_{\text{jets}} E_T e^{-\eta}}{2y E_e}$$

 $x_{\gamma}^{\text{OBS}} = 1: \text{ direct } \gamma \qquad x_{\gamma}^{\text{OBS}} < 1: \text{ resolved } \gamma \\ x_{\gamma}^{\text{OBS}} > (<)0.75: \text{ Enriched direct- (resolved-) } \gamma$

- Significant contribution $\approx 40\%$ from resolved photons
- Good agreement in shape between data and LO MC's (CASCADE too high for high x_{γ}^{OBS})
- Data compared to fixed-order NLO DGLAP calculation + hadronisation correction
- Low x_{γ}^{OBS} tail of NLO cross section below data

Charm Dijet Angular Distributions in PHP

Dijet scattering angle: $\cos \theta^* = \tanh \frac{\eta^{jet1} - \eta^{jet2}}{2}$

 θ^* : angle between jet-jet axis and beam axis in the dijet rest frame

Resolved sample rises strongly with $|\cos \theta^*|$ \rightarrow Signature of *g*-exchange Direct sample consistent with *q* exchange Evidence for resolved photon charm excitation LO MC describe data shapes of both $x_{\gamma}^{\text{OBS}} > 0.75$ and $x_{\gamma}^{\text{OBS}} < 0.75$

Charm Dijet Angular Distributions in PHP

Match the jet with a D^* in $(\eta - \phi)$ space Define: Jet $(1) = D^*$ jet Jet (2) = Other jet

Contribution of LO resolved to $x_{\gamma}^{\text{OBS}} > 0.75$ explains the asymmetric distribution in $\cos \theta^*$ Strong rise in $d\sigma/d \cos \theta^*$ towards γ direction for $x_{\gamma}^{\text{OBS}} < 0.75$

Clear evidence for charm from the photon

Charm Dijet Angular Distributions in PHP

Comparison with fixed-order NLO and with CASCADE ZEUS

For $x_{\gamma}^{\text{OBS}} > 0.75$ NLO describe data well For $x_{\gamma}^{\text{OBS}} < 0.75$ NLO lower than data in both proton and photon directions. Shape OK

CASCADE exceed data by $\approx 30\%$, mostly in $x_{\gamma}^{\text{OBS}} > 0.75$ Shape described reasonably well

Charm Fragmentation

 $c \operatorname{quark} \rightarrow c \operatorname{meson} \operatorname{fragmentation: non-perturbative}$ QCD \Rightarrow described by phenomenological models Important to study charm fragmentation to find:

- Are u and d quarks produced equally ? $R_{u/d} = \frac{cu}{cd}$ (=1 if isospin conserved)
- Are vector (D^*) and pseudoscalar (D) mesons produced as predicted by spin counting? $P_V = \frac{V}{V+PS} (= 0.75?)$
- What is the *s*-quark production suppression ? $\gamma_s = \frac{2cs}{cd+cu}$
- What are the relative production fractions of the various *D*-mesons? $f(c \rightarrow D) = \frac{N(D)}{N(c)} = \frac{\sigma(D)}{\Sigma_{all}\sigma(D)}$
- Are these fractions universal? Compare HERA with e^+e^- results

Fragmentation functions

- \bullet Few forms for energy transfer quark \rightarrow meson
- Tunable parameters fixed from e^+e^- fits
- First ep measurement compared with e^+e^-

 \Rightarrow test of universality of charm fragmentation

Charm fragmentation function

Taken from e^+e^- when HERA data compared to QCD Major source of theoretical uncertainty Kinematic region: $Q^2 < 1 \text{GeV}^2$ (PHP) $130 < W_{\gamma p} < 280 \text{ GeV}$

At least one jet with $E_T^{\text{jet}} > 9 \ GeV$, $|\eta^{\text{jet}}| < 2.4$ D^* with $p_T^{D^*} > 2.0 \ GeV$, $|\eta^{D^*}| < 1.5$ associated with a jet Fraction of jet energy carried by D^* : $z = \frac{(E+p_{\parallel})_{D^*}}{2E_{jet}}$

Normalised cross section in z:

Compare to LO MC via Peterson function: $f(z) \propto [z(1-1/z-\epsilon/(1-z))^2]^{-1}$ ϵ free parameter Strong sensitivity to ϵ value Fit of LO MC with Peterson function: $\epsilon = 0.064 \pm 0.006^{+0.011}_{-0.008}$ (= 0.053 from fits to LEP data)

Charm Fragmentation Function

Compare z measured from ep to that from e^+e^-

- z defined differently in both cases For e^+e^- : $z = E_{D^*}/E_{beam}$
- Different charm production mechanisms

ZEUS

LEP low-z peak due to $g \rightarrow c\bar{c}$ splitting z(ep): Similar shape for z > 0.3 as $z(e^+e^-)$ of ARGUS/OPAL analysed by Nason et al. Precision competitive with LEP Results support universal charm fragmentation

Charm reaginementation reactions/ natios

From H1 measured $D^{*\pm}$, D^0 , D^{\pm} , D_s cross sections, deduce fragmentation fractions (prel.)

 e^+e^- world average

$$\begin{split} f(c \to D^+) &= \ 0.20 \pm 0.02^{+0.04+0.03}_{-0.03-0.02} & 0.23 \pm 0.02 \\ f(c \to D^0) &= \ 0.66 \pm 0.05^{+0.12+0.09}_{-0.14-0.05} & 0.55 \pm 0.03 \\ f(c \to D^+_s) &= \ 0.16 \pm 0.04^{+0.04+0.05}_{-0.04-0.05} & 0.10 \pm 0.03 \\ f(c \to D^{*+}) &= \ 0.26 \pm 0.02^{+0.06+0.03}_{-0.04-0.02} & 0.24 \pm 0.01 \\ Uncertainty : & stat. syst. theory \end{split}$$

Calculate ratios of different quark/spin states

• Ratio or *u* to *d* quarks $R_{u/d} = \frac{cu}{cd} = \frac{\sigma^{dir}(D^0) + \sigma(D^{*0})}{\sigma^{dir}(D^{\pm}) + \sigma(D^{*\pm})}$ $R_{u/d} = 1.26 \pm 0.20 \pm 0.12$ 1.00 ± 0.09 e^+e^- world average

• Fraction of vector mesons $P_V = \frac{V}{V+PS} = \frac{D^*}{D^*+D}$ $P_V = 0.69 \pm 0.04 \pm 0.01$ from cd H1 prel. $0.61 \pm 0.06 \pm 0.03$ from cd,cu H1 prel. $0.55 \pm 0.04 \pm 0.03$ D^{*+}, D^0 ZEUS prel. 0.60 ± 0.03 e^+e^- world average

• Strangeness suppression factor $\gamma_s = \frac{2f(c \rightarrow D_s^+)}{f(c \rightarrow D^+) + f(c \rightarrow D^0)}$ $\gamma_s = 0.36 \pm 0.10 \pm 0.08$ H1 prel. $0.27 \pm 0.04 \pm 0.03$ ZEUS 0.26 ± 0.03 e^+e^- world average Good agreement with e^+e^-

 \implies Charm fragmentation universal

Summary and Outlook

- Large samples of charm events collected. Experimental errors typically below the large theoretical uncertainties
- Charm DIS cross sections are in reasonable agreement with pQCD calculations
- Charm PHP cross sections are above fixedorder NLO and FONLL calculations
- Resummed NLO (NLL) calculations for charm PHP are closer to data
- Strong evidence for charm from the photon
- Evidence that charm fragmentation is universal in e^+e^- and ep from $f(c \rightarrow D), R_{u/d}, P_V, \gamma_s$

OUTLOOK

- Complete HERA I data analysis (1994-2000)
- Need better theoretical input (NLO MC's, improved matched NLO, NNLO calculations)
- HERA II(2003-2007): \approx factor 4 increase in luminosity $(L_{int} \approx 1 f b^{-1})$
- Detector upgrades: Si microvertex detector Forward tracking

 \Rightarrow big improvement in *c* tagging efficiency

Expect a lot of more interesting Charm Physics from HERA II