Jet and hadron production in photon-photon interactions at L3

Maria Novella Kienzle-Focacci
Université de Genève

- $e^+e^- \rightarrow e^+e^- \text{ hadrons event selection}$
- Inclusive π^0 production
- Inclusive h^\pm production
- Jet cross-sections
- Conclusions
Event selection $e^+e^- \to e^+e^- \text{ hadrons}$

- $E_{tot} \leq 40\% \sqrt{s}$
- $\# \text{ particles} \geq 6$
- Anti-tag:
 - reject if $E_{Lumi} > 30$ GeV
- $W_{vis}^2 = (\sum_i E_i)^2 - (\sum_i \vec{p}_i)^2$
 - $W_{vis} < W_{\gamma\gamma}$
 - $W_{vis} > 5$ GeV

![Graph showing event selection criteria](image-url)
$e^+e^- \rightarrow e^+e^- \text{hadrons}$

- $\langle \sqrt{s} \rangle = 194 \text{ GeV}$
 - $L = 414 \text{pb}^{-1}$
 - $\Rightarrow \sim 2 \text{ million events}$

- Main backgr. (1 – 15%):
 - $e^+e^- \rightarrow e^+e^-\tau^+\tau^-$
 - $e^+e^- \rightarrow \text{hadrons}$

- Monte Carlo:
 - PYTHIA 5.722, PHOJET 1.05c

- Phase space defined by MC:
 - $W^2_{\gamma\gamma} < 5 \text{ GeV}$, $Q^2 < 8 \text{ GeV}^2$
Inclusive single hadron production

π^0 and K_S^0 published in PLB524 (2001)44.
π^\pm and K^\pm published in PLB554 (2003)105.

π^0 and K_S^0 reconstruction

![Graphs showing inclusive single hadron production results for $\gamma\gamma$ and $\pi^+\pi^-$ combinations with different pt and $|\eta|$ ranges.](image-url)
\(\pi^0 : \) Comparison with NLO QCD

- Measurements exceed QCD predictions \((\text{B.A.Kniehl})\) at high \(p_t\)
- No anomaly in \(\eta\) distribution
h^\pm selection

- **Track selection:**
 \[p_t > 400 \text{ MeV}, \quad \text{DCA} < 4 \text{ mm}, \]
 \[> 80\% \text{ expected hits}. \]

- \[|\eta| < 1 \]

- \[\sigma_{p_t}/p_t \simeq (0.015 \text{ GeV}^{-1}) \ p_t \]

- **Efficiency ~ 60 – 80\%**

- **Systematics:**
 - MC models: 5-25\%
 - Selection efficiency: 10-1\%
 - Background subtraction: 0.1-5\%
π± and K±

Separation by Monte Carlo ratios (JETSET 7.409).

✦ Good agreement with π0 and Ks0 data
Comparison with OPAL

\[< \sqrt{s} > \approx 165 \text{ GeV}, \ | \eta | < 1.5 \]
Fits to the data

- For \(p_t < 1.5 \) GeV

 Exponential \(A e^{-p_t/\langle p_t \rangle} \)
 \(\langle p_t \rangle \approx 230 \) MeV for \(\pi^\pm, \pi^0 \)
 \(\approx 300 \) MeV for \(K^\pm, K_S^0 \)
 \(\Rightarrow \) Soft interactions

- For \(p_t > 1.5 \) GeV

 power law \(A p_t^{-B} \)
 \(1.5 \leq p_t < 5. \) GeV \(B = 4.2 \pm 0.2 \)
 \(\chi^2/d.o.f. = 4.7/2 \)
 \(5.0 \leq p_t < 20. \) GeV \(B = 2.6 \pm 0.3 \)
 \(\chi^2/d.o.f. = 0.7/2 \)
 \(\Rightarrow \) Direct and resolved (QCD)
Diagrams contributing to $\gamma\gamma$ interactions

Monte Carlo models: VDM, LO QCD (DGLAP), pdf in the photon

SOFT:

HARD:

Direct

Single Resolved

Double Resolved

M. N. Kienzle-Focacci

Jet and hadron production (page 10)

Frascati 8/4/2003
Measurements exceed QCD predictions (B.A. Kniehl) at high p_t

The data are largely beyond the direct contribution
Comparison with Monte Carlo

- PHOJET is too low (similar to NLO calculations)
- PYTHIA has changed! Becomes consistent with PHOJET
Compare Pythia versions

✦ Striking difference, pointing to QCD diagrams!

M. N. Kienzle-Focacci
Jet and hadron production (page 13) Frascati 8/4/2003
Jet analysis

- Generated jets: $\gamma, \pi^\pm, p, n, k^\pm$
- Reconstructed jets: tracks $0.4 \leq p_t \leq 100\text{GeV}$
 e.m. clusters $E > 0.1\text{GeV}$
- Kinematical range:
 $p_t > 3\text{GeV}$ \quad | \eta | < 1
- Algorithms
 DURHAM:
 \[y_{ij} = 2 \min(E_i^2, E_j^2) \left(1 - \cos \theta_{ij}\right)/E_{vis}^2 \]
 $y_{cut} = 0.1$
 KTCLUS:
 \[d_{ij} = \min(p_{ti}^2, p_{tj}^2) \left((\eta_i - \eta_j)^2 + (\Phi_i - \Phi_j)^2 \right)/D^2 \]
 $D = 1$
Durham Jet definition

\[y_{\text{cut}} = 0.1 \] maximise 2-jet events

\[\text{Number of jets with } p_t > 3 \text{GeV and } |\eta| < 1 \sim \text{independent of } y_{\text{cut}} \]
Particles inside a jet

- Less particles in KTCLUS jets
- Durham is used at LEP for e^+e^-, spherical configurations
- KTCLUS is used in cylindrical configurations and NLO theory

Jets

Durham

KTCLUS

Systematics due to Monte Carlo model: 5-60 %

M. N. Kienzle-Focacci
Jet and hadron production (page 17) Frascati 8/4/2003
Jets: Comparison with OPAL

Using KTCLUS algorithm

\[\frac{d\sigma}{dE_t} [\text{pb} / \text{GeV}] \]

\[< \sqrt{s} > \simeq 133 \text{ GeV}, \ W_{\gamma\gamma} > 3 \text{ GeV} \]

K. Ackerstaff et al.
Jets: Fits and NLO calculations

Using KTCLUS algorithm

NLO QCD : S. Frixione and L. Bertora

Again an excess at high pt! For \(2 \rightarrow 2\) process \(B=3\)
Conclusions

Unexpected deviations from theoretical predictions are observed:

- $\sigma(\gamma\gamma \rightarrow \text{hadrons})$
- $d\sigma/dp_t$ of π^0 and π^\pm for $p_t > 5\text{GeV}$
- $d\sigma/dp_t$ of inclusive jet production for $p_t > 20\text{GeV}$
- $\sigma(\gamma\gamma \rightarrow b\bar{b})$

Two questions arise:

Are these phenomena correlated?
Which is their origin?