

Maria Novella Kienzle-Focacci Université de Genève

- $e^+e^- \rightarrow e^+e^-$ hadrons event selection
 - The Inclusive π^0 production
- The Inclusive h^{\pm} production
- Jet cross-sections
- Conclusions

Event selection $e^+e^- \rightarrow e^+e^-$ hadrons

♦ E_{tot} ≤ 40% √s
♦ # particles ≥ 6
♦ Anti-tag : reject if E_{Lumi} >30 GeV
♦ W²_{vis} = (∑_i E_i)² - (∑_i p_i)² W_{vis} < W_{γγ} W_{vis} > 5 GeV

M. N. Kienzle-Focacci

Jet and hadron production (page 2)

$e^+e^- \rightarrow e^+e^-$ hadrons

- $\checkmark < \sqrt{s} >= 194 \text{ GeV}$ $L = 414 \text{pb}^{-1}$
 - $\Rightarrow \sim 2$ million events
- → Main backgr. (1 15%): $e^+e^- \rightarrow e^+e^-\tau^+\tau^$ $e^+e^- \rightarrow hadrons$
- → Monte Carlo :
 - **PYTHIA 5.722, PHOJET 1.05c**
- \checkmark Phase space defined by MC:

 $\mathrm{W}^2_{\gamma\gamma} < 5~\mathrm{GeV}$, $Q^2 < 8~\mathrm{G}eV^2$

Inclusive single hadron production

π^0 and K_S^0 published in PLB524 (2001)44. π^{\pm} and K^{\pm} published in PLB554 (2003)105.

π^0 and K^0_S reconstruction

π^0 : Comparison with NLO QCD

♦ Measurements exceed QCD predictions (B.A.Kniehl) at high p_t ♦ No anomaly in η distribution

Jet and hadron production (page 5)

● Data h[±] 6 dN / dp_t [tracks / GeV] 10 $\Box MC \ e^+e^- \rightarrow e^+e^-\tau^+\tau^-$ 10⁵ $\frac{1}{MC} e^+ e^- \rightarrow q\bar{q}$ $\frac{1}{MC} e^+ e^- \rightarrow W^+ W^ \overline{D}MC e^+e^- \rightarrow \tau^+\tau^-$ 10 10 2 10 10 20 15 5 10 p_t [GeV]

- Track selection: $p_t > 400 \text{ MeV}, \text{ DCA } < 4 \text{ mm},$ > 80% expected hits.
- $\blacklozenge \mid \eta \mid < 1$
- $\sigma_{p_t}/p_t \simeq (0.015 \text{ GeV}^{-1}) p_t$
- Efficiency $\sim 60 80\%$
- Systematics : MC models: 5-25%
 Selection efficiency: 10-1%
 Background subtraction: 0.1-5%

 $\underline{\pi^{\pm} \text{ and } \mathbf{K}^{\pm}}$

Separation by Monte Carlo ratios (JETSET 7.409).

 \blacklozenge Good agreement with π^0 and K^0_s data

M. N. Kienzle-Focacci

Jet and hadron production (page)

(page 7)

Comparison with OPAL

Jet and hadron production (page 8)

Fits to the data

• For $p_t < 1.5 \text{ GeV}$

Exponential $Ae^{-p_t/\langle p_t \rangle}$ $\langle p_t \rangle \simeq 230 \text{ MeV for } \pi^{\pm}, \pi^0$ $\simeq 300 \text{ MeV for } K^{\pm}, K_S^0$ $\Rightarrow \text{ Soft interactions}$ $\Rightarrow \text{ For } p_t > 1.5 \text{ GeV}$

power law Ap_t^{-B} $1.5 \le p_t < 5. \text{ GeV}$ $B = 4.2 \pm 0.2$ $\chi^2/d.o.f. = 4.7/2$

 $5.0 \le p_t < 20. \text{ GeV}$ $B = 2.6 \pm 0.3$ $\chi^2/d.o.f. = 0.7/2$ \Rightarrow Direct and resolved (QCD)

Diagrams contributing to $\gamma\gamma$ interactions

M. N. Kienzle-Focacci

Jet and hadron production (page 10) Frascati 8/4/2003

Comparison with Theory

• Measurements exceed QCD predictions (B.A.Kniehl) at high p_t • The data are largely beyond the direct contribution

M. N. Kienzle-Focacci

Jet and hadron production (page 11)

Comparison with Monte Carlo

PHOJET is too low (similar to NLO calculations)
 PYTHIA has changed ! Becomes consistent with PHOJET

M. N. Kienzle-Focacci

L3

Jet and hadron production (page 12)

Compare Pythia versions

◆ Striking difference, pointing to QCD diagrams!

M. N. Kienzle-Focacci

Jet and hadron production (page 13)

Frascati 8/4/2003

Jet analysis

• Generated jets : γ , π^{\pm} , p, n, k^{\pm} ♦ Reconstructed jets : tracks $0.4 \le p_t \le 100 \text{GeV}$ e.m. clusters E > 0.1 GeV \blacklozenge Kinematical range : $p_t > 3 \text{GeV} \qquad \mid \eta \mid < 1$ ♦ Algorithms **DURHAM** : $y_{ij} = 2min(E_i^2, E_j^2)(1 - \cos \theta_{ij})/E_{vis}^2$ $y_{cut} = 0.1$ KTCLUS : $d_{ij} = min(p_{ti}^2, p_{tj}^2)((\eta_i - \eta_j)^2 + (\Phi_i - \Phi_j)^2)/D^2$ D = 1

M. N. Kienzle-Focacci

Jet and hadron production (page 14)

Durham Jet definition

Jet and hadron production (page 15)

<u>Jets</u>

Durham

KTCLUS

Systematics due to Monte Carlo model : 5-60 %

Jet and hadron production (pa

(page 17)

Jets: Comparison with OPAL

K. Ackerstaff et al.Z. Phys.C 73 (1997) 433.

 $<\sqrt{s}>\simeq 133~{\rm GeV}$, ${\rm W}_{\gamma\gamma}>3~{\rm GeV}$

L3

Jets: Fits and NLO calculations

Using KTCLUS algorithm

NLO QCD : S. Frixione and L. Bertora

M. N. Kienzle-Focacci

L3

Jet and hadron production (page 19)

Conclusions

- ✤ Unexpected deviations from theoretical predictions are observed:
- \$\sigma(\gamma\gamma\gamma)\$ + hadrons\$)
 \$\delta/dp_t\$ of \$\pi^0\$ and \$\pi^{\pm}\$ for \$p_t > 5\$GeV\$
 \$\delta/dp_t\$ of inclusive jet production for \$p_t > 20\$GeV\$
 \$\sigma(\gamma\gamma\gmma)\$ + \beta\beta)\$
- \Rightarrow Two questions arise :
 - Are these phenomena correlated? Which is their origin?