Forward Jets and Particles in ep collisions and parton dynamics On behalf of H1 and ZEUS Collaborations

Jacek Turnau, Institute of Nuclear Physics, Cracow

- Parton dynamics at high energies
- Central region
- Forward Jets
- Forward π^0
- Conclusions

QCD Evolution at low *x*

k_T

At low *x* scattered parton usually descends from long cascade of parton branchings.

$$\Delta \tau_{g1} \ge \Delta \tau_{g2} \ge \Delta \tau_{g3} \ge \dots \Delta \tau_{gn}$$
$$\Delta \tau_{g} \sim \frac{1}{\Delta E} \sim \frac{2xp}{k_{T}^{2}}$$

$$k_{T1} \leq k_{T2} \dots \leq k_{Tn}$$

$$x_{g1} \ge x_{g2} \ge \ldots \ge x_g$$

 $\theta_1 \leq \theta_2 \leq \ldots \leq \theta_n$

DGLAP

Comparison of the data to MC models with different QCD dynamics

k_t ordered initial state radiation

RAPGAP DIR

No k_t ordering in initial state radiationResolved photonCCFM evolution equationRAPGAP RES at scale Q2CASCADE 1.0+ p_t^2 (jets) or Q2 + 4 p_t^2 (π^0)

Moral: NNLO may be important in forward region

Forward jets : forward region under special scrutiny

Forward jets in ZEUS detector

Forward jets \Leftrightarrow forward particles (π^0)

higher rates

+

- ambiguities of jet algorithms
- exp. difficult in very forward (p) region

identification possible +in more forward region

There is another interesting aspect of bringing particle into the game - later

Forward π^0 cross section : *x* dependence

Similar pattern of agreement/disagreement for other distributions

Overview of description of jet/particle x-sections

Evolution scheme	Renor. & factor.scale	Fragmentation scheme	Fragmen- tation scale	Forward jets	Forward π^0
DGLAP (dir+res) RAPGAP	$\mu^2 = Q^2 + p_t^2$ Up to $\mu^2 = Q^2 + 4p_t^2$	JETSET 7.4 (Lund model)	String inv. mass	QK	OK at upper limit of renor. scale
CCFM CASCADE	$\mu^2 = Q^2 + 4m_Q^2$	PYTHIA 6.2 (Lund model)	String inv. mass	too high	too low
Mod. LO BFKL	$\mu^2 = k_{Tjet}^2$	LO KKP FF	z_pi* Q ²	OK	OK

Something wrong either in mod. LO BFKL (KMO) or CASCADE

Transverse energy flow associated with forward π^0

SUMMARY AND CONCLUSIONS

Forward jets at HERA: after ~10 years description still difficult.

>NLO DGLAP not enough to describe forward jet data

>DGLAP direct + resolved describes the fwd jet & π^0 data

Energy flow pattern slightly favors DGLAP direct + resolved in comaprison with other schemes

>Mod. LO BFKL tuned to jet data describes π^0 data

>CCFM slightly overshoots jet data and underestimates π^0 data

➤There seems to be contradiction between last two points : something must be wrong... Forward jets and BFKL

Modified LO BFKL calculation

Kwiecinski, Martin Outhwaite hep-ph/9903439

Normalization very sensitive to infrared cut-off $\,k_0$ and scale for $\alpha_S^{}$

Modified LO BFKL calculation Kwiecinski, Martin Outhwaite hep-ph/9903439

Particle production in central region e.g. K_s in photoproduction

Particle Production well understood

Forward Jets

	H1 cuts	ZEUS cuts
$E_{ m e}^{\prime}$	> 11 GeV	> 10 GeV
$oldsymbol{y}_{ ext{e}}$	> 0.1	> 0.1
$oldsymbol{E}_{T,jet}$	> 3.5 (5) GeV	> 5 GeV
η_{jet}	1.7 - 2.8	< 2.6
$E_{ m T,jet}/Q^2$	0.5 - 2	0.5 - 2
x_{jet}	> 0.035	> 0.036
$p_{z,jet}^{Breit}$		> 0 i.e. TF
\overline{x}	0.0001 - 0.004	0.00045 - 0.045