Production of isolated prompt photons in yy collisions at OPAL

PHOTON 2003 Joachim Lillich University of Freiburg

- Introduction
- Event selection
- Total and differential cross-sections
- Summary

Introduction $\gamma\gamma \rightarrow \gamma X$

- Motivation: quark and gluon structure of the photon
- **Isolated prompt photon cross section :** PYTHIA (leading order):

SaS-1D pdf, p_T^{γ} >3.0 GeV and $|\eta^{\gamma}| < 1$; $\eta = -\ln \tan \theta/2$

• single-resolved: $\sigma_{single} = 0.13 \text{ pb}$

• double-resolved: $\sigma_{double} = 0.009 \text{ pb}$

q

• Next to leading order: FSR photons

Data & Monte Carlo

- Data: OPAL 1997–2000 at $\sqrt{s_{ee}} = 183 209 \, GeV$ Integrated luminosity 648.6 pb $^{-1} \langle \sqrt{s_{ee}} \rangle = 196.6 \, GeV$
- Monte Carlo:
 - Signal:
 - PYTHIA, HERWIG (only single resolved)
 - PHOJET: FSR-photons
 - Background: $\eta, \pi^0, \overline{n}$
 - PHOJET
 - Single particle generator: Study of ECAL showers

Event selection

Preselection

- Anti-tag:
 - $E_{FD} < 0.5 E_{b}, E_{SW} < 0.3 E_{b}$
- $N_{tracks} \ge 3$, $|Q_{tot}| \le 3$
- Veto e^+e^- annihilations: $5 \text{ GeV} < W_{\text{vis}} < 0.6 E_{\text{b}}$
- Veto beam-gas & beam-wall events

$$|P_{longitudinal}/E_{vis}| < 0.98$$

Photon candidate

- OPAL photon finder
- ECAL cluster
 - $2 \leq N_{leadglass \ blocks} \leq 12$
- $p_T^{\gamma} > 3.0 \ GeV$
- $|\eta^{\gamma}| < 1$
 - *Time Of Flight detector:*

 $|T_{measured} - T_{expected}| < 2 ns$

Further cuts

Electron veto

• Electron ID via dE/dx:

 $|w_{e}| > 0.5$

Reject events, if

 $n_{electrons} / n_{tracks} > 0.5$

<u>Photon and hadronic</u> <u>system back to back:</u>

$$\pi - l < \phi_{hadrons} - \phi_{photon} < \pi + l$$

Further cuts

Isolation

• Criterion proposed by Frixione:

$$\sum_{hadrons,i} E_{T,i} \Theta(\delta - R_{i,y}) \leq \epsilon E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \leq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \geq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(R)}; \delta \geq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(\delta)}; \delta \geq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(\delta)}; \delta \geq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(\delta)}; \delta \geq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(\delta)}; \delta \geq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(\delta)}; \delta \geq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(\delta)}; \delta \geq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(\delta)}; \delta \geq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(\delta)}; \delta \geq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(\delta)}; \delta \geq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(\delta)}; \delta \geq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(\delta)}; \delta \geq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(\delta)}; \delta \geq \sum_{r,y} E_{T,y} \frac{1 - \cos(\delta)}{1 - \cos(\delta)}; \delta \geq \sum_{r,y} \frac{1 - \cos(\delta)}{1 - \cos(\delta)}; \delta$$

with R=1, ϵ =0.2

- Advantages:
 - →Infrared safe
 - →Background suppression
 - →Similar efficiencies for single and double resolved processes

Analysis of ECAL showers

• Shower shape variables:

$$-\sigma = \sqrt{\frac{\sum [(\vartheta_i - \bar{\vartheta})^2 + (\phi_i - \bar{\phi})^2]E}{E_{cluster}}}$$
$$- f_{max} = \frac{E_{max}}{E_{cluster}}$$

• Binned Log–Likelihood–Fit:

$$g(\sigma, f) = a g_{\gamma}(\sigma, f) + b g_{\pi^{0}}(\sigma, f) + (1 - a - b)$$
$$(c g_{\overline{n}}(\sigma, f) + (1 - c) g_{\eta}(\sigma, f))$$

 $a=0.86 \pm 0.08 \text{ (stat)}$ $b=0.12 \pm 0.08 \text{ (stat)}$

Determination of single and double resolved contribution

• γ + jet sample:

cone jetfinder: R=1, E_T>2.5 GeV $\chi_{LL}^{\pm} = \frac{p_T^{\gamma}(e^{\pm \eta_{jet}} + e^{\pm \eta_{\gamma}})}{\sum_{hadrons, jet, \gamma} (E \pm p_z)}$

Binned Log–Likelihood–Fit:

$$\begin{split} g(x_{LL}^{+}, x_{LL}^{-}) &= r \, a \, g_{sr}(x_{LL}^{+}, x_{LL}^{-}) \\ &+ (1 - r) \, a \, g_{dr}(x_{LL}^{+}, x_{LL}^{-}) \\ &+ (1 - a) \, g_{bg}(x_{LL}^{+}, x_{LL}^{-}) \\ &single \ resolved \ fraction: \end{split}$$

 $r=0.47 \pm 0.11 \text{ (stat)}$

Prompt photons: variables

Transverse energy flow inside the isolation cone

Total isolated prompt photon cross-section

• Efficiencies for single and double resolved processes

$$\epsilon_{\text{single}} = 51.8 \%$$
 $\epsilon_{\text{double}} = 61.8 \%$

• Total isolated cross–section (*FSR* included)

$$\sigma_{tot}(p_T^{\gamma} > 3.0 \, GeV, |\eta^{\gamma}| < 1) = (0.32 \pm 0.04 \pm 0.04) \, pb$$

The measured cross-section is 2.3 times higher than the PYTHIA prediction (3.2 σ). TRISTAN: $\sigma (p_T > 2.0 GeV) = 1.72 \pm 0.67 \text{ pb}$ at $\sqrt{s_{ee}} = 58 GeV$ 3 times higher than PYTHIA

Systematic uncertainties

 Binning effects 	1.3%
• Cut on number of lead glass blocks	1.3%
• Ratio $\eta: \overline{n}$	2.0%
• Reweighting of single particle MC	2.8%
• Parton densitiy functions	3.8%
• Herwig instead of PYTHIA	3.8%
• Ratio single to double resolved MC	4.0%
• ECAL energy scale	7.0%
• π^0 background	8.3%
→TOTAL	13.5%

Differential cross-sections

Fontannaz et al: Eur. Phys. J. C23 (2002) 503

Differential cross-sections

Fontannaz et al: private communications

Summary

- In the data taken from 1997 to 2000 137 events are selected.
- Main background: neutral particles produced in $\gamma\gamma$ collisions
- Separate signal from background with shower shape variables.
- For $p_T^{\gamma} > 3.0$ GeV and $|\eta^{\gamma}| < 1$:

$$\Rightarrow \sigma_{\text{tot}} = (0.32 \pm 0.04 \text{ (stat)} \pm 0.04 \text{ (sys)}) \text{ pb}$$

→PYTHIA reproduces the shape of $d\sigma/dp_T^{\gamma}$ and $d\sigma/d|\eta^{\gamma}|$ but underestimates the cross-sections

→Good agreement with NLO calculations