Recent QCD Results from the Tevatron

Don Lincoln
Fermilab

Don Lincoln, Fermilab
DØ Calorimeter

- Uranium-Liquid Argon Calorimeter stable, uniform response, radiation hard
- Compensating: $e/\pi \approx 1$
- Uniform hermetic coverage $|\eta| \leq 4.2$, recall $\eta \equiv -\ln[\tan(\theta/2)]$
- Longitudinal Segmentation
 - 4 EM Layers (2,2,7,10) X_0
 - 4–5 Hadronic Layers (6λ)
- Transverse Segmentation
 $\Delta\eta \times \Delta\phi = 0.05 \times 0.05$ in EM
 $\Delta\eta \times \Delta\phi = 0.10 \times 0.10$ otherwise

Don Lincoln, Fermilab
Cone Jet Definition

- $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$
- Run I
 - Add up towers around a “seed”
 - Iterate, using “jets” as seeds, until stable
 - Jet quantities: E_\perp, η, ϕ
 - $E_\perp^{\text{jet}} = \sum_{R \leq 0.7} E_\perp^{\text{tower}}$
- Modifications for Run II
 - Use 4-vector scheme
 - p_\perp instead of E_\perp
 - Add midpoints between jets as additional seeds
 - Infrared safe
- Correct to particles

Don Lincoln, Fermilab

QCD Results from the Tevatron
Jet Energy Scale

- Measured jet energy is corrected to particle level
 \[E_{\text{corr}} = \frac{E_{\text{uncorr}} - O}{RS} \]
- O energy due to previous events, multiple interactions, noise, etc. (minimum bias, etc.)
- R calorimeter response to hadrons (includes non-linearities, dead material, etc.)

Measured from \(E_\perp \) imbalance in \(\gamma + \) jet events

- S net fraction of particle-jet energy that remains inside jet cone after showering in calorimeter (jet transverse shapes)

- Large statistical uncertainties and substantial systematic uncertainties (increases with energy due to extrapolation)
- Current \(\gamma + \) jet statistics extends only to about 200 GeV
Dijets in Run II

- Cross section at $E_{CM} = 1.96$ TeV is 2-5 times greater as compared to 1.8 TeV
- Higher statistics allow:
 - Better determination of proton structure at large x
 - Testing pQCD at a new level (resummation, NNLO theory, NLO event generators, etc.)
 - Improved searches for new physics (quark compositeness, resonances, etc.)
Dijet Sample Selection

- Selection criteria:
 - \(N_{\text{jet}} \geq 2 \)
 - \(|\eta_{\text{jet}}| < 0.5 \)
 - \(\Delta R = 0.7 \) cone jets

- Data sample
 - \(\text{MET}/p_{\text{T}}^\text{jet} < 0.7 \)
 - Primary vertex:
 - \(|Z_{\text{vertex}}| < 50 \text{ cm} \)
 - \(N_{\text{tracks}} \geq 5 \)
 - Run selection based on hardware status, MET
 - Jet selection based on calorimeter characteristics to reduce fakes and noise (i.e. hot cells)

Integrated Luminosity: 34 pb\(^{-1}\)

Don Lincoln, Fermilab

QCD Results from the Tevatron
Trigger Selection

- **Level 1**
 - Hardware trigger
 - Fast calorimeter readout
 - Multi-tower triggers
 - Coverage is $|\eta| < 2.4$

- **Level 2**
 - Software trigger with special hardware
 - Fast calorimeter readout
 - Simple jet clustering

- **Level 3**
 - Software trigger
 - Precision calorimeter readout
 - Simple cone algorithm with $\Delta R = 0.7$ (no splitting & merging)

Don Lincoln, Fermilab

<table>
<thead>
<tr>
<th>L3 p_\perp Threshold</th>
<th>Offline M_{JJ} Cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 GeV</td>
<td>150 GeV</td>
</tr>
<tr>
<td>45 GeV</td>
<td>180 GeV</td>
</tr>
<tr>
<td>65 GeV</td>
<td>300 GeV</td>
</tr>
<tr>
<td>95 GeV</td>
<td>390 GeV</td>
</tr>
</tbody>
</table>
Unsmearing Correction

• Jet Energy Resolution
 – Use the data dijet sample
 – Asymmetry measurement
 \[A = \frac{p_t^{jet1} - p_t^{jet2}}{p_t^{jet1} + p_t^{jet2}} \]
 – Correct for third jets and particle jet resolution

• Dijet Mass resolution unsmearing
 – Smear PYTHIA events in mass bins
 – Gaussian fit to \(\Delta M_{jj}/M_{jj} \) in each bin
 – Fit to
 \[\frac{\sigma(M_{jj})}{M_{jj}} = \sqrt{\frac{N^2}{M_{jj}^2} + \frac{N^2}{M_{jj}} + C^2} \]
 – Determine unsmearing correction

Don Lincoln, Fermilab
Dijet Mass Cross Section

\[\left\langle \frac{d\sigma}{dM_{JJ}} \right\rangle = \frac{N_{\text{event}}}{L} \frac{1}{\Delta M_{JJ}} \frac{C_{\text{unsmear}}}{\varepsilon_{\text{eff}}} \]

- **Efficiencies**
 - Estimated from data
 - Vertex quality: \(~78\%\)
 - Jet quality: \(~94\%\)

- **10\% normalization uncertainty not shown** (luminosity)

- **NLO pQCD JETRAD compared to data**
 - All scales set equal
 - \(R_{\text{sep}} = 1.3\)

Don Lincoln, Fermilab
Theory Comparison

- Main uncertainties: jet energy scale, p_{\perp} resolution, jet quality cuts. (Dominated by jet energy scale.)
- 10% normalization uncertainty not shown.
Inclusive Jet Cross Section

\[
\left\langle \frac{d\sigma}{dp_T} \right\rangle = \frac{N_{\text{event}}}{L \cdot \Delta p_T} \times \frac{C_{\text{unsmear}}}{\varepsilon_{\text{eff}}}
\]

- Event and jet efficiencies are estimated from data
- 10% normalization uncertainty from luminosity is not shown
- The theory is NLO pQCD calculated with JETRAD

\[
\langle\frac{d\sigma}{dp_T}\rangle = [\text{pb} / (\text{GeV}/c)]
\]

\[
D\bar{O} \text{ Run II Data, } L_{\text{int}} = 34 \text{ pb}^{-1}
\]

\[
\text{NLO CTEQ6M, } R_{\text{sep}} = 1.3, \mu_R = \mu_F = \frac{E_T^{\text{max}}}{2}
\]

Cone Algorithm

\[
R_{\text{cone}} = 0.7
\]

\[
|\eta| < 0.5
\]
Inclusive Jet Cross Section

Systematic error band, dominated by energy scale
(10% luminosity normalization not included)

Don Lincoln, Fermilab

QCD Results from the Tevatron
CDF Run II Preliminary

Don Lincoln, Fermilab

QCD Results from the Tevatron

Collider Detector at Fermilab (CDF)
- New plug calorimeter \((1.1 < |\eta| < 3.6)\)
- New tracking system
- Upgraded trigger

Jet 1
\[E_T = 583 \text{ GeV (raw)} \]
\[\eta_{det} = 0.31 \]

Jet 2
\[E_T = 546 \text{ GeV (raw)} \]
\[\eta_{det} = -0.30 \]
Inclusive Jet Cross Section

- Repeat Run I analyses
 - Use CDF cone jet algorithm with $R = 0.7$ (JetClu)

- Event selection cuts
 - $|z_{\text{vertex}}| < 60$ cm
 - $\sum E_T < 1500$ GeV
 - $E_T^{\text{missing}} / \sqrt{\sum E_T} < 2$ to 7

\[
\frac{d\sigma}{dE_T} = \frac{N}{\varepsilon L \Delta E_T \Delta \eta}
\]

- Require fully efficient trigger
- Apply jet energy corrections (same as in Run I)

Don Lincoln, Fermilab

QCD Results from the Tevatron
Luminosity uncertainty = 6%

Don Lincoln, Fermilab

QCD Results from the Tevatron
Corrected: Log

8 orders of magnitude!

CTEQ 6.1: hep-ph/0303013

Don Lincoln, Fermilab

QCD Results from the Tevatron
Corrected: Linear

CDF Run II Preliminary

JetClu cone \(R = 0.7 \), \(\sqrt{s} = 1.96 \, \text{TeV} \)

Good agreement (within uncertainties)

Inclusive jet \(E_T \) (GeV)

Don Lincoln, Fermilab

QCD Results from the Tevatron
• Higher σ in Run II due to higher \sqrt{s}

• 3 more bins at high dijet mass

Don Lincoln, Fermilab

QCD Results from the Tevatron
Summary

• We have made significant progress on two important QCD measurements
 – Inclusive jet cross-section
 – Di-jet mass cross section

• Data/theory agreement excellent, although errors in this preliminary measurement are larger than our published results.

• Improved statistics for calibration will yield a measurement competitive with published results by summer, with superior results following.

• Analysis efforts ongoing, including a rich diffractive physics effort.
Our Jet Algorithm

- We use a four vector cone algorithm with a radius of 0.7 in \(\eta, \phi \) space
 - Identify seed tower in the calorimeter
 - Using the event’s vertex, assign a four vector to that seed
 - Add all other other four vectors inside \(R \) to generate the jet’s four vector
 - If the jet’s four vector does not line up with the seed’s repeat using the new jet four vector as the seed.

- Changes from Tevatron Run I
 - We use the midpoints between jets as seeds for new jets
 - We use four vectors instead of scalar quantities

The Jet Definition

\[
p^J = (E^J, \vec{p}^J) = \sum_{i \in J} (E^i, p_x^i, p_y^i, p_z^i)
\]

The Jet’s Properties

\[
p_T^J = \sqrt{(p_x^J)^2 + (p_y^J)^2}
\]

\[
y^J = \frac{1}{2} \ln \left(\frac{E^J + p_z^J}{E^J - p_z^J} \right) \quad \varphi^J = \arctan \left(\frac{p_y^J}{p_x^J} \right)
\]
Unsmearing

- The steeply falling cross section means that we get more jets migrating into a bin from its left than its right.
- To unsmear this, we guess an ansatz function for the true cross section and smear it with our jet resolution.
- We vary the ansatz’s parameters to get the best possible fit.
- Lastly, we multiply our data by the same amount that the ansatz is multiplied by to get the smeared ansatz that matches the data.

\[
F(M'_{jj}) = \int_0^{\sqrt{s}} dM'_{jj} f(M'_{jj}) G(M'_{jj} - M_{jj}, M'_{jj})
\]
Unsmearing the Cross Sections

- Because the cross section is steeply falling, imperfect jet resolution causes the cross section to shift to the right.