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1. Introduction

Colliders

Accelerators with high-energy colliding e+e−, γe,

γγ and µ+µ− beams.

QED processes with σ which do not drop with

increasing energy.

Mfi for polarized |i〉 and |f〉 states.
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Jet-like processes

These reactions have the form of a two–jet pro-

cess with the exchange of a virtual photon γ∗ in

the t-channel (Fig. 1):
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Fig. 1. Generic block diagram of the two–jet process

ee → jet1 jet2

The subject of our consideration is the jet–like

process of Fig.1 at high energies

s = 2p1p2 = 4E1E2 � m2
i (1)

for arbitrary helicities of leptons λi = ±1/2

and photons Λi = ±1.

The emission and scattering angles θi are:

mi

Ei
� θi � 1 , mi � |pi⊥| � Ei . (2)
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Importance of jet-like QED
processes

Figs. 2–12.

The discussed processes are important:

1) As monitoring processes;

2) Due to their large cross sections those reac-

tions contribute as significant background;

3) The bremsstrahlung process is the leading

beam loss mechanism (H. Burkhardt; Y. Fu-

nakoshi).

4) The methods to calculate the helicity am-

plitudes of these processes can be easily trans-

lated to several semihard QCD processes such

as γγ → qq̄QQ̄ and γγ → MM ′, γγ → Mqq̄

(I.F. Ginzburg, S.L. Panfil, V.G. Serbo).
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Fig. 2. Single bremsstrahlung in ee collisions: ee → eeγ
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Fig. 3.Single lepton pair production in γe collisions: γe →
l+l−e
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Fig. 4. Double bremsstrahlung with single photons along

each initial lepton direction: ee → eeγγ
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Fig. 5. Double lepton pair production in γγ collisions:

γγ → e+e−l+l−.
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Fig. 6. Process γe → l+l−eγ with a final photon along the

initial lepton direction.
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Fig. 7. Two–photon pair production in ee collisions: ee →
ee l−l+.
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Fig. 8. Bremsstrahlung pair production in ee collisions:

ee → ee l+l−.

��
��

�

�

�

�

�
�
�

Fig. 9. Double bremsstrahlung ee → eeγγ with two pho-

tons along the direction of one initial lepton.
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Fig. 10. Process γe → γl+l−e with the both final photon

and lepton pair along the direction of the initial photon.
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Fig. 11. Triple bremsstrahlung ee → eeγγγ with three

photons along the direction of one initial lepton.
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Fig. 12. The block diagram for the process ee → eeµ+µ−γ
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Some references

Particular problems related to these processes

were discussed in a number of original papers

starting from the brilliant paper of G. Racah,

Nuovo Cim. 14 (1937) 93 and in reviews:

V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo,

Phys. Rep. 15 C (1975) 181

V.N. Baier, V.S. Fadin,V.A. Khoze and E.A. Kuraev, Phys.

Rep. 78 (1981) 293

G.L. Kotkin, A. Schiller, V.G. Serbo, Int. J. Mod. Phys.

A 7 (1992) 4707.

But only recently (see E.A. Kuraev, A. Schiller, V.G. Serbo,

B.G. Shaikhatdenov, Nucl. Phys. B 570 (2000) 359 and

references therein) the highly accurate analytical

calculation of the helicity amplitudes of all jet–

like processes up to e4 (shown in Figs. 2–10)

has been completed.

In the above–mentioned original papers different

approaches have been used. Here we develop a

new simple and effective method to calculate

jet–like processes
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The form of “the final result”

At high energies the region of scattering angles

(2) gives the dominant contribution to the cross

sections of all QED jet–like processes. In this

region we obtain all helicity amplitudes with high

accuracy, omitting only terms of the order of

m2
i

E2
i

, θ2
i , θi ·

mi

Ei
(3)

or smaller.

The amplitude Mfi has a simple factorized

form

Mfi =
s

q2
J1J2 (4)

where the impact factors J1 and J2 do not

depend on s.

We give analytical expressions for J1 and J2.
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They are not only compact but are also very

convenient for numerical calculations, since large

compensating terms are already canceled.

It is well known that this problem of large com-

pensating terms is very difficult to manage in all

computer packages like CompHEP.

The discussed approximation differs consider-

ably from the known approach of the CALCUL

group and others (in which terms of the order

of mi/|pi⊥| are neglected).
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Three basic ideas

(i) A convenient decomposition of all 4–momenta
into large and small components (using the so–
called Sudakov or light–cone variables);

(ii) Gauge invariance of the amplitudes is used
in order to combine large terms into finite ex-
pressions;

(iii) Calculations are significantlyly simplified in
replacing the numerators of lepton propagators
by vertices involving real leptons.

All these ideas are not new. In particular, the
last one is the basis of the equivalent–electron
approximation
P. Kessler, Nuovo Cim. 17 (1960) 809;

V.M. Baier, V.S. Fadin, V.A. Khoze, Nucl. Phys. B 65

(1973) 381

and has been used to calculate some QCD am-
plitudes with massless quarks
G.R. Farrar, F. Neri, Phys. Lett 130 B (1983) 109.
However, the combination of these ideas leads
to a very efficient way in calculating the am-
plitudes of interest just in the jet kinematics.
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2. Method of calculation

Sudakov or light-cone variables

We use light-like 4–vectors P1 and P2:

P1 = p1 − m2
1

s
p2, P2 = p2 − m2

2

s
p1,

P2
1 = P2

2 = 0 , s = 2p1p2, (5)

and decompose any 4–vector A as

A = xAP1 + yAP2 + A⊥ , A2 = sxAyA + A2⊥ ,

xA =
2AP2

s
, yA =

2AP1

s
. (6)

The parameters xA and yA are the so-called

Sudakov variables (they often are referred also

as light-cone variables). In the used reference

frame

A⊥ = (0, Ax, Ay, 0) = (0, A⊥, 0) , A2⊥ = −A2⊥ .
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The 4–vectors pi of particles from the first jet

have large components along P1 and small ones

along P2. Therefore, in the limit s → ∞ the

parameters

xi =
2piP2

s
=

Ei

E1
, i ∈ jet1 (7)

are finite, whereas

yi =
2piP1

s
=

m2
i + p2

i⊥
sxi

, i ∈ jet1 (8)

are small.

The Sudakov variable xi is the fraction of energy

of the first incoming particle carried by the i-th

final particle.

The same is true for a 4–vector pj of particles

from the second jet with replacement xj ↔ yj.

The Sudakov parameters xq and yq for the virtual

photon are small.
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Photon polarization vector

Let e ≡ e(Λ)(k) be the polarization 4-vector of

the final photon in the first jet. Using gauge

invariance, this vector can be presented in the

form

e = yeP2 + e⊥ (9)

with

ye =
−2k⊥e⊥

sxk
, xk =

2kP2

s
. (10)

and

e⊥ ≡ e
(Λ)
⊥ = − Λ√

2
(0, 1, iΛ, 0) = −e

(−Λ) ∗
⊥ . (11)

Therefore, e⊥ does not depend on the 4–momen-

tum of the photon k contrary to the polarization

vector e itself.
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Factorization of amplitudes

The amplitude of Fig. 1 can be written as

Mfi = M
µ
1

gµν

q2
Mν

2 , (12)

where M
µ
1 and Mν

2 are the amplitudes of the

upper and lower block.

The metric tensor gµν can be presented in the

form

gµν =
2

s

(
P

µ
2 Pν

1 + P
µ
1 Pν

2

)
+ g

µν
⊥ , (13)

therefore,

Mfi =
2

sq2

(
M

µ
1P2µ

)
(Mν

2P1ν) + (14)

+
2

sq2

(
M

µ
1P1µ

)
(Mν

2P2ν) + M
µ
1

g⊥µν

q2
Mν

2 .
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Since p1 and pi have large components along P1

and small components along P2 and q has small

components both along P1 and along P2, one

obtains the estimates

M
µ
1P1µ ∝ s0 , M

µ
1P2µ ∝ s (15)

and analogously

Mν
2P1ν ∝ s , Mν

2P2ν ∝ s0 , (16)

therefore, only the first term in Eq. (14) can

give a contribution proportional to s.

As a result,

Mfi =
s

q2
J1 J2 , (17)

J1 =

√
2

s
M

µ
1 P2µ , J2 =

√
2

s
Mν

2 P1ν .

The impact factor J1 depends on xi, pi⊥ with

i ∈ jet1 and on the helicities of the first particle

and of the particles in the first jet.
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Another form of impact factors

Due to gauge invariance,

qµM
µ
1 = (xqP1 + yqP2 + q⊥)µ M

µ
1 = 0 . (18)

Taking into account that xq is small, one finds

M
µ
1 P2µ = −M

µ
1

q⊥µ

yq
. (19)

and

J1 = −
√

2

syq
M

µ
1 q⊥µ , J2 = −

√
2

sxq
Mν

2 q⊥ ν . (20)

This representation shows that at small trans-

verse momentum of the exchanged photon

J1,2 ∝ |q⊥| at q⊥ → 0 . (21)

In our further analysis we will combine various

contributions of the impact factor into expres-

sions which clearly exhibit such a behavior.
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Vertices instead of spinor lines

Let us consider a virtual electron in the ampli-

tude M1 with p = (E,p), E > 0 and virtuality

p2 − m2. Due to jet kinematics, |p2 − m2| � E2.

We introduce an artificial energy

Ep =
√

m2 + p2

and the bispinors u
(λ)
p and v

(λ)
p corresponding to

a real electron and a real positron with 3–

momentum p and energy Ep. In the high-energy

limit

E − Ep

E + Ep
=

p2 − m2

(E + Ep)2
≈ p2 − m2

4E2
. (22)

There is an exact identity:

p̂ + m =
E + Ep

2Ep
u
(λ)
p ū

(λ)
p +

E − Ep

2Ep
v
(λ)
−p v̄

(λ)
−p (23)

or

p̂ + m ≈ u
(λ)
p ū

(λ)
p +

p2 − m2

4E2
v
(λ)
−p v̄

(λ)
−p . (24)
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Using these eqations for all virtual electrons,

we are able to substitute the numerators of all

spinor propagators by vertices involving real elec-

trons and real positrons. These generalized ver-

tices are finite in the limit s → ∞.

On the contrary, a numerator like p̂+m is a sum

of a finite term p̂⊥ + m and an unpleasant com-

bination Eγ0 − pzγz of large terms that requires

special care. Therefore, those replacements sig-

nificantly simplify all calculations.

More detail consideration shows that:

1) If an electron line with numerator p̂+m con-

nects vertices with the emission of one real and

one virtual photon,
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the simple substitution rule takes place:

p̂ + m → u
(λ)
p ū

(λ)
p . (25)

2) For emission by electron, the vertices of the

types

v̄
(λ′)
−p′ P̂2 v

(λ)
−p (26)

and

v̄
(λ′)
−p′ ê∗ v

(λ)
−p (27)

are absent.

3) It is easy to check that

ū
(λ′)
p′ ê∗ v

(λ)
−p = −v̄

(λ′)
−p′ ê∗ u

(λ)
p .
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3. Vertices for
bremsstrahlung processes

To calculate the impact factors involving the

emission of real photons we need only two types

of vertices:

1) those for the transition e(p) → e(p′) + γ(k)

where γ(k) is a real photon with helicity Λ

V (p, k) ≡ V Λ
λλ′(p, k) = ū

(λ′)
p′ ê(Λ) ∗ u

(λ)
p ,

Ṽ (p, k) ≡ Ṽ Λ
λλ′(p, k) =

= ū
(λ′)
p′ ê(Λ) ∗ v

(λ)
−p = −v̄

(λ′)
−p′ ê(Λ) ∗ u

(λ)
p .

The result of calculation

V (p, k) =
[
δλλ′ 2

(
e(Λ) ∗p

) (
1 − x δΛ,−2λ

)
+

+ δλ,−λ′ δΛ,2λ

√
2mx

]
Φ ,

Ṽ (p, k) = 2
√

2E′ δλ,−λ′ δΛ,2λ Φ

where

x =
ω

E
, Φ =

√
E

E′ e
i(λ′ϕ′−λϕ) . (28)
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It is useful to remind here that for the polariza-

tion vectors used here one has

ep = e⊥
(
p⊥ − k⊥

x

)
. (29)

2) the vertex for the transition

e(p) + γ∗(q) → e(p′)

where γ∗(q) is a virtual photon with energy frac-

tion xq = 0 (within our accuracy):

V (p) ≡ Vλλ′(p) =

√
2

s
ū
(λ′)
p′ P̂2 u

(λ)
p =

√
2

E

E1
δλλ′ Φ .
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Properties of vertices

1) Vertices with a maximal change of helicity,

max |∆λ| = max |Λ + λ′ − λ| = 2 , (30)

are absent.

2) If the produced photon becomes very hard
(ω → E) the initial electron “transmits” its he-
licity to the photon:

V (p, k) ∝ δΛ,2λ , Ṽ (p, k) → 0 for x → 1 .

(31)

3) If the final electron becomes hard (E′ → E,
soft photon limit, x � 1), the initial electron
“transmits” its helicity to the final electron: in
that limit the vertex

V (p, k) = −2

x

(
e∗⊥ k⊥

)
δλλ′ (32)

dominates, which corresponds to the approxi-
mation of a classical current.

4) For HNC vertices a strong correlation be-
tween the helicities of the initial electron and
the photon exists:

Λ = 2λ if λ′ = −λ . (33)
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4. Impact factor for the

single bremsstrahlung
e(p1) + γ∗(q) → e(p3) + γ(k)
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Fig. 13. Amplitude for the virtual Compton scattering

J1(eλ1
+ γ∗ → eλ3

+ γΛ) = 4πα

(
N1

2p1k
− N3

2p3k

)

with

N1 = ū3

√
2P̂2

s
(p̂1 − k̂ + m)ê∗u1 ,

N3 = ū3ê∗(p̂3 + k̂ + m)

√
2P̂2

s
u1 .
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Then

J1 =
√

24πα

[
1 − x

2p1k
V (p1, k) − 1

2p3k
V (p3 + k, k)

]
Φ

where

V (p1, k) = δλ1λ3
2
(
e(Λ) ∗p1

) (
1 − x δΛ,−2λ1

)
+

+ δλ1,−λ3
δΛ,2λ1

√
2mx ,

V (p3 + k, k) = δλ1λ3
2
(
e(Λ) ∗p3

) (
1 − x δΛ,−2λ1

)
+

+ δλ1,−λ3
δΛ,2λ1

√
2mx

and the Φ factor

Φ =
1√

1 − x
ei(λ3ϕ3−λ1ϕ1) .

The impact factor J1 ∝ q⊥. Indeed, if we use

equation

V (p3 + k, k) = V (p1 + q, k) = V (p1, k) +

+ 2
(
q⊥ e

(Λ) ∗
⊥

) (
1 − x δΛ,−2λ1

)
δλ1λ3

,
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that leads to

J1 =
√

24πα [A1 V (p1, k) + q⊥B1] Φ ,

A1 =
1 − x

2p1k
− 1

2p3k
,

B1 = −e
(Λ) ∗
⊥
p3k

(
1 − x δΛ,−2λ1

)
δλ1λ3

.

It is a simple and compact expression for all

8 helicity states written in such a form that all

individual large (compared to q⊥) contributions

are canceled.

Indeed, the last term in J1 is directly propor-

tional to q⊥. Since

2p1k = xa , a = m2 +
k2⊥
x2

,

2p3k =
x

1 − x
b , b = m2 +

(
q⊥ − k⊥

x

)2

,

we immediately obtain

A1 =
1 − x

x

(
1

a
− 1

b

)
∝ q⊥ .
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5. Impact factor for the

double bremsstrahlung
e(p1) + γ∗(q) →

e(p3) + γ(k1) + γ(k2)

� � ��
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Fig.14. Feynman diagrams for the impact factor related

to the double bremsstrahlung, diagrams with k1 ↔ k2 pho-

ton exchange have to be added

Notation

This impact factor corresponds to six diagrams:

J1 =
√

2 (4πα)3/2 X3MΛ1 Λ2
λ1 λ3

(x1, x2, k1⊥, k2⊥, p3⊥)Φ
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with

Φ =
1√
X3

ei(λ3ϕ3−λ1ϕ1) .

J1 and M do not depend on s but on the energy

fractions

x1,2 = ω1,2/E1, X3 = E3/E1 , x1+x2+X3 = 1

and on the transverse momenta of the final par-

ticles in the combinations:

q⊥ = k1⊥ + k2⊥ + p3⊥ , rj = (X3kj − xjp3)⊥

and

Kj = kjx + i kjy, Q = qx + i qy, Rj = rjx + i rjy .
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The denominators of the propagators :

aj ≡ −(p1 − kj)
2 + m2 =

1

xj
(m2x2

i + k2
j⊥) ,

bj ≡ (p3 + kj)
2 − m2 =

1

xjX3
(m2x2

j + r2j⊥) ,

a12 = a21 ≡ −(p1 − k1 − k2)
2 + m2 =

= a1 + a2 − 1

x1x2
(x1k2⊥ − x2k1⊥)2 ,

b12 = b21 ≡ (p3 + k1 + k2)
2 − m2 =

= b1 + b2 +
1

x1x2
(x1k2⊥ − x2k1⊥)2 .

General formula

M = (1 + P12) M,

where

P12f(k1, e1; k2, e2) = f(k2, e2; k1, e1) , P2
12 = 1.

and
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X3M =
X3

a1a12
V (p1, k1)V (p1 − k1, k2) −

− 1 − x1

a1b2
V (p1, k1)V (p1 − k1 + q, k2) +

+
1

b12b2
V (p1 + q, k1)V (p1 − k1 + q, k2) −

+
X3

a12

Ṽ (p1, k1) Ṽ (p1 − k1, k2)

4(E1 − ω1)2
+

− 1

b12

Ṽ (p1 + q, k1) Ṽ (p1 − k1 + q, k2)

4(E3 + ω2)2
.

Now we transform J1 to a form which clearly

exhibits the proportionality J1 ∝ q⊥:

X3M
Λ1Λ2
λ1 λ3

= A2 V
Λ1
λ1λ(p1, k1)V

Λ2
λλ3

(p1 − k1 + q, k2) +

+ q⊥B2
Λ1Λ2
λ1 λ3

+

− Ã2

Ṽ
Λ1
λ1λ(p1, k1) Ṽ

Λ2
λλ3

(p1 − k1, k2)

4E2
1(1 − x1)2

with the scalars

A2 =
X3

a1a12
− 1 − x1

a1b2
+

1

b12b2
, Ã2 = −X3

a12
+

1

b12

and the transverse 4–vector B2
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B2
Λ1Λ2
λ1 λ3

= −X3
2e

(Λ2) ∗⊥
a1a12

V
Λ1
λ1λ3

(p1, k1)

×
(
1 − x2

1 − x1
δΛ2,−2λ3

)
+ (34)

+
2e

(Λ1) ∗⊥
b12b2

V
Λ2
λ1λ3

(p1 − k1 + q, k2)
(
1 − x1 δΛ1,−2λ1

)
.

It is not difficult to check that the quantities A2

and Ã2 vanish in the limit of small q⊥:

A2 ∝ q⊥ , Ã2 ∝ q⊥ , (35)

whereas B2 is finite in this limit.

This equation represents a very simple and

compact expression for all 16 helicity states,

where all individual large (compared to q⊥) con-

tributions have been rearranged into finite ex-

pressions.
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Explicit expressions

To find the amplitudes with given initial and final
helicities, it is sufficient to substitute in the
above equations the expressions for vertices:

M++
++ = 2

{
A2

K∗
1R∗

2

x1x2X3
+

K∗
1Q∗

x1a1a12
− Q∗R∗

2

x2X3b12b2

}
,

M−−
++ = X3

(
M++

++

)∗
,

M−+
++ = −2(1 − x1)

×
(

A2
K1R∗

2

x1x2X3
+

K1Q∗
x1a1a12

− QR∗
2

x2X3b12b2

)
,

M+−
++ =

X3

(1 − x1)2

(
M−+

++

)∗
+

+
2

1 − x1

(
m2A2

x1x2

X3
− Ã2

)
,

M+−
+− = 2mx1

(
A2

R2

x2X3
+

Q

a1a12

)
,

M−+
+− = 2m

x2

X3

(
A2

K1

x1
− Q

b12b2

)
,

M−−
+− = 0 ,

M++
+− = − 1

1 − x1

(
X3 M+−

+− + M−+
+−

)∗
.
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6. Impact factor for the
multiple bremsstrahlung

The generalization of the results obtained for

the single and double bremsstrahlung to the

bremsstrahlung of n photons can be done straight-

forwardly.

To demonstrate this, we consider the case n = 3

......

7. Some general properties of
bremsstrahlung impact factors

These properties are directly related to the cor-

responding properties of vertices.
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1) Bremsstrahlung amplitudes or impact factors

with a maximal change of helicities are ab-

sent since in this case at least one transition

vertex has to appear with a maximal change of

its helicities (= 2) as well.

2) If one of the final particles in the jet becomes

hard (ωi → E1 or E3 → E1) the sign of the

helicity of the initial lepton coincides with that

of the helicity of the hard final particle.

3) In HNC amplitudes the sign of the helicity of

at least one final photon has to coincide with

the sign of the initial lepton helicity

MΛ1···Λn
λ1 −λ1

∝ δΛi,2λ1
.
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8. Summary

1. In the present paper we have formulated a

new effective method to calculate all helic-

ity amplitudes for bremsstrahlung jet–like QED

processes at tree level.

The main advantage of our method consists in

using simple universal “building blocks” —

transition vertices with real leptons. Those ver-

tices replace efficiently the spinor structure in-

volving leptons of small virtuality in the impact

factors, making the calculations short and trans-

parent for any final helicity state.

2. In the case of bremsstrahlung we have found

that only three nonzero transition vertices are

required. The properties of the vertices deter-

mine all nontrivial general properties of the he-

licity amplitudes.
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3. By construction, the impact factors are fi-

nite in the high energy limit and depend only

on energy fractions and transverse momenta of

particles in the final jet, and on helicities of all

real photons and leptons.

4. We have calculated the impact factors for

single, double and triple bremsstrahlung, follow-

ing the same procedure:

In a first step, we use the allowed vertices to

write down the corresponding impact factors.

In the next step, we use gauge invariance with

respect to the virtual photon of 4–momentum

q and rearrange impact factors into a form in

which all individual large (compared to q⊥) con-

tributions have been canceled.

37



5. Those rules together with the found impact

factors allows us to give a complete analytic

and compact description of all helicity am-

plitudes in e−e± scattering with the emission

of up to three photons in one lepton direction,

where in the last case 25 × 25 = 1024 different

helicity amplitudes are involved.

6. Since by construction individual large contri-

butions (compared to q⊥) have been rearranged

into finite expressions, the expressions obtained

for the amplitudes are very convenient for nu-

merical calculations of various cross sections.

38


