Test of non-commutative QED ${\rm in} \ {\rm e}^+ {\rm e}^- \to \gamma \gamma \ {\rm at} \ {\rm LEP}$

Tatsuo Kawamoto University of Tokyo, OPAL

> 10. April 2003 Photon 2003

• What is NCQED ? • NCQED in $e^+e^- \rightarrow \gamma\gamma$ • What we (don't) see in the OPAL data

Non-commutative geometry

 $[x_{\mu}, x_{
u}] = i \theta_{\mu
u}$

- $heta_{\mu
 u}$: antisymmetric, constant, frame independent \sim length²=1/energy² $\sim 1/\Lambda^2$. Analog of Planck constant *h* in ordinary Quantum Mechanics. $[x_{\mu}, p_{\nu}] = ih\delta_{\mu
 u}$
- In string theory, noncommutative geometry may arise through quantisation of string in the presence of background fields. (Connes, Douglas, Schwarz, Seiberg, Witten,..)
- Λ is perhaps \sim the Planck scale.
- Λ might be at TeV scale \Leftarrow large extra dimension, D-brane, ... : TeV scale gravity
- Possible experimental signatures ?

Non-commutative QED

Non-commutative quantum field theory is not well known. Non-commutative QED exists (NCQED). Renormalizable, U(1) gauge symmetry, ...

- ee γ vertex contains a kinematic phase : $e^{\frac{i}{2}p^{\mu}\theta_{\mu\nu}p^{\nu}}$ Dependence on momenta and $\theta_{\mu\nu}$. \rightarrow Unique direction. Violaton of Lorentz invariance.
- Nonabelian-like 3 γ , 4 γ self couplings, also dependent on $p^{\mu}\theta_{\mu\nu}p^{\nu}$

- Relevant high energy processes: $\gamma e \rightarrow \gamma e, \ \gamma \gamma \rightarrow \gamma \gamma, \ e^+e^- \rightarrow \gamma \gamma,....$
- Low energy experiments :

limits from Lamb shift, Aharonov-Bohm effect, clock comparisons, ...

$${
m e^+e^-} o \gamma\gamma$$
 is sensitive only to $heta_{0i}=rac{1}{\Lambda^2_{_{NC}}}c_{0i}~(i=1,3)$

space-time noncommutativity.

*c*_{0*i*} : Unit space vector pointing to the 'unique direction'

 Λ_{NC} : Energy scale of non-commutativity

Differential cross-section for ${
m e^+e^-}
ightarrow \gamma\gamma$ (in the c.m. frame of ${
m e^+e^-}$ collision) :

$$\frac{d\sigma}{d\cos\theta d\phi} = \frac{\alpha^2}{s} \frac{1+\cos^2\theta}{1-\cos^2\theta} (1-\sin^2\theta\sin^2\Delta_{NC})$$

 $\Delta_{NC} = \frac{s}{4\Lambda_{NC}^2} (c_{01}\sin\theta\cos\phi + c_{02}\sin\theta\sin\phi + c_{03}\cos\theta)$

Dependence on ϕ as well as θ .

- The unit vector c_E is perhaps sitting on some large scale structure in space e.g. the rest frame of the cosmic microwave background.
- Experiment on the earth is changing its orientation as the earth rotates.

Transformation of coordinate system

 $oldsymbol{\zeta}$ = $\omega t, \; \omega = 2\pi/T_{sd}$ (T_{sd} = sidereal day)

Two components of c_E : constant term and terms varying with time. when $\eta=0$ (parallel to the rotation axis of the earth), c_E is stationary.

Location and orientation of OPAL experiment

OPAL data

OPAL ${
m e^+e^-}
ightarrow \gamma\gamma$ sample

- \sqrt{s} =181 209 GeV
- Collected in 1997-2000
- \mathcal{L} =672 pb $^{-1}$
- 5235 events $|\cos heta| < 0.93$

$$rac{d\sigma}{d\cos heta d\phi}(\Lambda,\eta,\xi\,;\zeta=\omega t)$$

Consider 3 cross-sections

- $\frac{d\sigma}{d\cos\theta}$: ϕ integrated, time averaged
 - $\frac{d\sigma}{d\phi}$: $\cos\theta$ integrated, time averaged
- $\sigma(t)$: $\cos heta$ integrated (0.0-0.6), ϕ integraged

Time averaged, ϕ integrated $\cos heta$ distribution

Independent of η

Time averaged, $\cos heta$ integrated ϕ distribution

Time dependence of total cross-section

Sidereal daily structure of cross-section

If observed \Rightarrow infer ξ

Observed cross-section vs ($\zeta - \xi$) (time):

Conclusion

- Studied NCQED in ${
 m e^+e^-}
 ightarrow \gamma\gamma$ with OPAL data at LEP
- taking into account earth rotation. The unique direction specfied by η and ξ .
- Limit on $\Lambda_{NC} > 141$ GeV at 95% CL, independent of η from $\frac{d\sigma}{d\cos\theta}$.
- η dependent limit on Λ_{NC} from $rac{d\sigma}{d\phi}$. $\Lambda_{NC} > 167$ GeV at $\eta = 0^{\circ}$.
- The first limit on NCQED from ${
 m e^+e^-}$ collider. (CERN-EP-2003-010, hep-ex/0303035)
- Study at higher energy linear collider $\Rightarrow \Lambda_{NC}$ to TeV.