Measurements of the Cross Sectionfor the Process $\gamma\gamma \rightarrow p\overline{p}$ $at \sqrt{s_{ee}} = 183 - 189 \text{ GeV}$ with the OPAL Detector at LEP

Teresa Barillari, MPI Munich *Photon 2003, Frascati* 10 April 2003

- Introduction
- Kinematics
- Theory
- Event selection for $\gamma\gamma \rightarrow p\overline{p}$ events
- Data analysis and results
- Conclusions

- ▷ OPAL paper "Measurement of the Cross-Section for the Process $\gamma\gamma \rightarrow p\overline{p}$ at $\sqrt{s_{ee}} = 183 - 189$ GeV at LEP" accepted for publication in Eur. Phys. J. C
- see: G. Abbiendi et al., hep-ex/0209052
- Work motivated by the quark-diquark model to test non pQCD calculations
- see: C. F. Berger, W. Schweiger, hep-ph/0212066 (2002); M. Anselmino et al., Int. J. Mod. Phys. A4 (1989)
- Three quark model yields cross-sections about one order of magnitude smaller than the experimental results for W > 2.5 GeV
- see: G. P. Lepage et S. J, Brodsky Phys. Rev. D22 (1980); G. R. Farrar et al., Nucl. Phys. B259 (1985),

V. L. Chernyak et al., Nucl. Phys. B246 (1984)

Kinematics

$$e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-X$$

$$\begin{split} & \mathsf{Q}_i^2 \approx 2\mathsf{E}_i\mathsf{E}_i^{'}(1-\cos\theta_i) \\ & \mathsf{Q}_i^2 = (\mathsf{q}_i^2-\mathsf{w}_i^2) \end{split}$$

 $\gamma\gamma$ center-of-mass system (CMS)

$$\begin{array}{c} (0,0) \\ \hline \gamma_1 \ (\mathsf{p}_1, \lambda_1) \\ \bullet \\ B_1 \ (\mathsf{p}_1, \lambda_1) \end{array} \begin{array}{c} \theta^* \ (\pi, \pi) \\ \gamma_2 \ (\mathsf{p}_2, \lambda_2) \\ \bullet \\ B_1 \ (\mathsf{p}_1, \lambda_1) \end{array}$$

 $W_{\gamma\gamma}$, invariant mass in the $\gamma\gamma$ CMS θ^* , polar angle in the $\gamma\gamma$ CMS

 $X = p\overline{p}, \Lambda\Lambda, \dots$ (Baryons)

 $p_1 = (\vec{E}_1, \vec{p}_1)$

 $p'_1 = (E'_1, \vec{p}'_1)$

 $p_2 = (E_2, \overrightarrow{p}_2)$

 $q_1 = (\omega_1, \vec{q}_1)$

 $p'_{2} = (E'_{2}, \vec{p}'_{2})$

 $q_2 = (\omega_2, \vec{q}_2)$

- ▷ "Untagged $\gamma\gamma$ events": both scattered electrons go undetected
- ▷ The final state X has small p_{\perp} and low mass
- The γγ CMS is boosted along the beam axis, the produced particles are close to the beam direction and they are almost back-to-back in x-y
- Detection and trigger efficiencies limited

Hard scattering picture (HSP)

In pQCD (or HSP) an exclusive process: $A + B \rightarrow C + D$ is described by the exclusive hadronic amplitude

see: Brodsky et al., Phys. Rev. D24 (1981); Brodsky et al., ECFA 87/108 (1987)

$$\mathcal{M} = \int_{0}^{1} T_{H}(x_{j}, p_{\perp}) \prod_{H_{i}} \left(\phi_{H_{i}}(x_{j}, \tilde{p}_{\perp}) \delta(1 - \sum_{k=1}^{n_{i}} x_{k}) \prod_{j=1}^{n_{i}} dx_{j} \right)$$

 $\rightarrow \mathcal{M}$ separates: "short-range" from "long-range" phenomena

- ϕ_{H_i} : Parton distribution amplitude (DA) for each hadron in the process T_H : Hard scattering amplitude
- \mathcal{M} has "two" phenomenological consequences
- The dimensional counting rules:

 $\frac{\mathrm{d}\sigma(\gamma\gamma\rightarrow\mathrm{p}\overline{\mathrm{p}})}{\mathrm{d}t}\sim s^{-6}$

$$\mathcal{M} \approx \frac{1}{(\mathbf{p}_{\perp}^2)^{(\mathbf{n}-4)/2}} f(\theta_{\mathrm{c.m.}})$$

The hadron helicity conservation rules: $\lambda_A + \lambda_B = \lambda_C + \lambda_D$

Hadron helicity conservation rules not in agreement with data

Teresa Barillari, MPI Munich

with

Quark-diquark model

There are applications of the quark-diquark model to the reactions: $\gamma\gamma \rightarrow B\overline{B}$ where $B = p, \Lambda, \Xi^{-}$, etc.,

see: C. F. Berger, W. Schweiger, hep-ph/0212066 (2002); M. Anselmino et al., Int. J. Mod. Phys. A4 (1989)

Diquarks modify the dimensional counting rules by decreasing n and can violate the hadron helicity conservation rules

▶ For the power law, we have now:

$$\frac{\mathrm{d}\sigma(\gamma\gamma\rightarrow\mathrm{p}\overline{\mathrm{p}})}{\mathrm{d}\mathrm{t}}\sim s^{-4}$$

Recent contribution in studing annihilation of $\gamma \gamma \rightarrow B\overline{B}$ processes comes from: "Handbag Mechanism"

see: M. Diehl, P. Kroll, C. Vogt, hep-ph/0206288 (2002);

Teresa Barillari, MPI Munich

Photon 2003, Frascati

The OPAL detector at LEP

Teresa Barillari, MPI Munich

Photon 2003, Frascati

10 April 2003

The $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-p\overline{p}$ *events*

A typical $\gamma \gamma \rightarrow p\overline{p}$ event selected with the **OPAL** detector at LEP2

Teresa Barillari, MPI Munich

Photon 2003, Frascati

Event selection

- Applied cuts
- Number of hits in CJ > 20
- ▷ 2 tracks with $Q_{\text{Tot}} = 0$
- ▷ $|d_0| < 1.0$
- $|\cos \theta| < 0.75$
- \triangleright p_{\perp} > 0.4GeV
- $\triangleright |\cos \theta^*| < 0.6$
- Trigger Conditions
- $arphi \ |\sum ec{\mathsf{p}}_{\perp}|^2 < 0.04 \mathrm{GeV}^2$
- \triangleright d \overline{E} /dx to eliminate background
- \triangleright W > 2.15 GeV

- $163 \ \gamma \gamma \rightarrow p \overline{p}$ events remained after the selection
- No events with acoplanarity more than 0.262 rad
- $W = 2.15 3.95 \, \text{GeV}$

 $\sim 500\,{
m p}\overline{
m p}$ events at LEP2 (data from 1997 to 2000)

Cross section measurements

• The $e^+e^- \rightarrow e^+e^-p\overline{p}$ differential cross section is given by:

$$\frac{\mathrm{d}\sigma(\mathrm{e}^{+}\mathrm{e}^{-}\rightarrow\mathrm{e}^{+}\mathrm{e}^{-}\mathrm{p}\overline{\mathrm{p}})}{\mathrm{d}\mathrm{W}\,\mathrm{d}|\cos\theta^{*}|} = \frac{N_{\mathrm{ev}}\left(\mathrm{W},|\cos\theta^{*}|\right)}{\mathcal{L}_{\mathrm{e}^{+}\mathrm{e}^{-}}\varepsilon_{\mathrm{TRIG}}\varepsilon_{\mathrm{DET}}\left(\mathrm{W},|\cos\theta^{*}|\right)\Delta\mathrm{W}\,\Delta|\cos\theta^{*}|}$$

 $\triangleright \mathcal{L}_{e^+e^-}$ = Measured integr. luminosity = 249.10±0.22±0.43 pb⁻¹

• The total cross section $\sigma(\gamma\gamma \rightarrow p\overline{p})$ is given by:

$$\sigma(\gamma\gamma \to \mathbf{p}\overline{\mathbf{p}}) = \frac{\mathrm{d}\sigma(\mathrm{e}^{+}\mathrm{e}^{-}\to\mathrm{e}^{+}\mathrm{e}^{-}\,\mathbf{p}\overline{\mathbf{p}})}{\mathrm{d}W} \left/ \frac{\mathrm{d}\mathcal{L}_{\gamma\gamma}}{\mathrm{d}W} \right.$$

- ▷ $d\mathcal{L}_{\gamma\gamma}/dW = GALUGA \gamma\gamma$ luminosity function
- see: G. Schuler, hep-ph/9610406 (1996); G. Schuler, hep-ph/9710506 (1997)

Invariant mass, efficiencies, and systematics

Source of Systematic uncertainties	Systematic uncertainty (%)		
Luminosity Function	5.0		
Trigger Efficiency	5.0		
Monte Carlo statistics ($W < 2.55$ GeV)	4.5		
(W > 2.55 GeV)	6.0		
${\sf d}E/{\sf d}x$ cuts $~~$ ($W<2.55$ GeV)	0.1		
$(W>2.55~{ m GeV})$	5.0		
Residual Background	6.0		
Total ($W < 2.55$ GeV)	10.3		
Total ($W > 2.55$ GeV)	12.1		

Teresa Barillari, MPI Munich

OPAL cross section measurements

Good agreement between our results and the quark-diquark model

• Power law compared to the data with $\sigma(\gamma\gamma \rightarrow p\overline{p}) \approx -W^{-2(n-3)}$ for three values of n. For data with W > 2.5GeV we obtain n = 9 ± 2

Existing $\gamma \gamma \rightarrow p\overline{p}$ *cross section measurements*

e ⁺ e ⁻	E _{Beam}	Integrated	W	Number of
Experiments	(GeV)	Luminosity (pb^{-1})	(GeV)	pp events
TASSO (DESY)	15 - 18.3	19.685	2.0 - 2.6	8
1982				
TASSO (DESY)	17	74	2.0 - 3.1	72
1983				
JADE (DESY)	17.4 - 21.9	59.3 + 24.2	2.0 - 2.6	41
1986				
TPC/2 γ (SLAC)	14.5	75	2.0 - 2.8	50
1987				
ARGUS (DESY)	4.5 - 5.3	234	2.6 - 3.0	60
1989				
CLEO (CESR)	5.29	1310	2.0 - 3.25	484
1994				
VENUS (TRISTAN)	57 - 64	331	2.2 - 3.3	311
1997				
OPAL (LEP)	91.5 - 94.5	249	2.15 - 3.95	163
2003				

Teresa Barillari, MPI Munich

Comparison with other experiments

• Agreement between the **OPAL** and the other experiments results for W > 2.3 GeV

Teresa Barillari, MPI Munich

Photon 2003, Frascati

Differential cross-section measurements

Teresa Barillari, MPI Munich

Angular dependence of the cross section

QED angular distribution for massless and pointlike fermions

- At high W, the pointlike p approximation agrees with the data, the diquark and the pure quark model curves.
- At low W, pointlike p approximation not valid anymore.
 More experimental investigation needed

Conclusions

 \Rightarrow OPAL published results for $\gamma\gamma \rightarrow p\overline{p}$ cross-section measurements

- Range covered: 2.15 GeV < W < 3.95 GeV and $|\cos \theta^*| < 0.6$
- our $\sigma(\gamma\gamma \rightarrow p\overline{p})$ measurements are in agreement with:
 - The other experimental results for $W>2.3\,\mbox{GeV}$
 - The quark-diquark model predictions
- The QCD power law fit yields an exponent $n = 7.5 \pm 0.8$ with statistical uncertainty only. More data needed to distinguish the proton seen as a state of three quarks or as a state of quark-diquark system.
- The shape of $d\sigma(\gamma\gamma \rightarrow p\overline{p})/d|\cos\theta|$ agrees with the other experiments results in comparable W range
- At low W values the dσ(γγ → pp̄)/d|cos θ| does not agree with the models. More investigation are neede in this region of W

This is the first $\gamma \gamma \rightarrow p \overline{p}$ cross section measurement performed at LEP