Measurement of the e⁺e⁻ hadronic cross section

at DA **PAPE** via radiative return

Stefan E. Müller Institut für Exp. Kernphysik, Universität Karlsruhe

(for the KLOE collaboration)

Photon 2003 - International conference on the structure

Frascati, 7.-11. April 2003

and interactions of the photon

claim a discrepancy between (SM-)theory and experiment • The nature of the difference in the two theoretical evaluations of a_{μ}^{had} has to be understood in order to $a_{\mu} = 11659000 (10^{-10})$

discrepancy between theory and experiment a higher significance clarify this difference and (together with a further reduction of the experimental error) give the • More and better information on the hadronic contribution to the SM calculation of a_{μ} could help to

(Double Annular Φ -Factory for Nice Experiments)

- e^+e^- collider with $\sqrt{s} = m_{\Phi} \approx 1.020 \text{ GeV}$
- two separate rings to minimize beam-beam-effects
- accumulator for efficient injection into main rings
- two interaction points:
 KLOE and DEAR/FINUDA

DAФNE: Performance

2000 run : 25 pb⁻¹ 7.5 x 10⁷ φ
2001 run: 190 pb⁻¹ 5.7 x 10⁸ φ
2002 run: 300 pb⁻¹ 9.0 x 10⁸ φ
DAΦNE Backgr. reduced

max int. Luminosity in one day: Peak Luminosity@KLOE IP: 4.5 pb⁻¹ $7.8 \cdot 10^{31} \text{cm}^{-2} \text{s}^{-1}$

• Magnet:

Superconducting coil (B=0.5 T)

• EM Calorimeter:

Lead/Scintillating fibres 4880 PM

• Driftchamber:

12582 Sense Wires52140 wires in total

• Beryllium Beampipe: R=10 cm, 0.5 mm thick

KLOE:

 $\sigma_T = 54 \text{ ps} / \sqrt{E(GeV)} \oplus 50 \text{ ps}$ (Bunch length contribution subtracted from constant term) $\sigma_{\rm E}/{\rm E} = 5.7\% \,/ \,\sqrt{\rm E}({\rm GeV})$

Driftchamber

Electromagnetic calorimeter

 $\sigma_{xy} \approx 150 \ \mu m, \ \sigma_z \approx 2 \ mm$

 $\sigma_p/p = 0.4\%$ (for 90⁰ tracks)

Signal selection:

Pion tracks are measured at angles $40^{\circ} < \theta_{\pi} < 140^{\circ}$

Photons are required to be within

 $\theta_{\gamma} < 15^{\circ} \text{ and } \theta_{\gamma} > 165^{\circ}$

Photons cannot be detected efficiently with EmC,

<u>*untagged*</u> measurement in which we cut on the direction of the missing momentum

The choice of this kinematical region was motivated by:

- small relative contribution of FSR
- reduced background contamination:
- $e^+e^- \rightarrow e^+e^-\gamma$
- $e^+e^- \rightarrow \mu^+\mu^- \gamma$
- $e^+e^- \rightarrow \phi \rightarrow \pi^+\pi^-\pi^0$

FSR suppression:

it in the measurement using kinematical cuts Our approach is to treat Final State Radiation of the pions as a ,,background" and suppress

MC (Binner, Kühn, Melnikov, Phys. Lett. B 459, 1999): Initial State Radiation and Final State Radiation contribution have been evaluated with

Contribution of FSR <1% for our selection cuts (i.e. model dependence negligible)

Background subtraction: 220

The signal is further selected by performing a cut in the kinetical variable trackmass in order to reduce $\pi^+\pi^-\pi^0$

background

μ⁺μ⁻γ background (M_{track}≈105 MeV) is rejected by a cut on M_{track} =120 MeV

The trackmass is the particle mass for the two tracks obtained by using the 4-momentum-conservation and the assumption that both particles have the same mass M_{trk} :

$$q_{\gamma}^{2} = \left(M_{\phi} - \sqrt{p_{1}^{2} + M_{trk}^{2}} - \sqrt{p_{2}^{2} + M_{trk}^{2}}\right)^{2} - (\vec{p}_{1} + \vec{p}_{2})^{2} = 0$$

Pion form factor:

Correcting for efficiencies, normalising to luminosity and dividing the spectrum $d\sigma/dM^2_{rec}$ by the radiation function $H(M_{rec}^2)$, we get a preliminary extraction of the pion form factor.

The next step is to refine the analysis with the full statistics of 2001 (ca. 170 pb⁻¹).

Current work is focused on:

- Efficiency estimation
- Luminosity
- Detector resolution (unfolding)
- Residual background subtraction

effective cross section for the actual selection cuts: We use 2 independent theoretical generators to calculate the

tinal precision is currently under evaluation

Conclusions:

- Last year we have performed an ,,attempt" on 73pb⁻¹ of data in order measurement utilizing the radiative return to test a method of getting the pion form factor from a
- Already with this reduced data sample, there are no limitations by statistics
- Now we are refining this measurement using the full statistics from 2001 (170 pb⁻¹) and evaluating systematics of the measurement (background contaminations, detector resolution etc).
- We are in the final phase towards a publication of our results!

Isospin symmetry breaking effects have to be taken into account!

Dispersion integral:

 a_{μ}^{hadr} can be expressed in terms of $\sigma(e^+e^- \rightarrow hadrons)$ by the use of a dispersion integral:

- E_{cut} is the threshold energy above which pQCD is possible s is the c.o.m.-energy squared of the hadronic system
- K(s) is a steady function that goes with 1/s.

enhancing low energy contributions of $\sigma^{hadr}(s)$

Low energy contribution:

the total value of a_{μ}^{hadr} .[Jegerlehner; hep-ph/0104304] The region around the energy of the ρ -meson adds with ca. 72% to

analysis efforts concentrate on the determination of The ρ -meson decays to 100% in $\pi^+\pi^-$, so in this energy region the

σ(e⁺e⁻→π⁺π⁻)

The current status of ${\mathfrak a}_\mu$ from experiment and (SM-) theory:

- The nature of the difference in the two evaluations of a_{μ}^{had} is currently not understood
- The reduction of the error on the hadronic contribution to the SM calculation discrepancy between theory and experiment a higher significance of a_u could (together with a further reduction of the experimental error) give this

Q _µ had	a _µ had(IbI)	a _ب ^{had} (nlo)	م µ ^{had} (lo) -{	(see Davier,Eidel	a ^{had} = a		auhad:
	"	-	" "	lmann,H	^{had} (Ic		
707.6 683.3	+ 8.6	-10.0	709.0 684.7	löcker,Zhanç	• •		
I+ I+	I I	1+	I+ I+) hep-ph.	a _µ had		
6.9) × 7.8) ×	з.5) ×	0.6) ×	5.9) × 7.0) ×	/0208177)	(nlo) +		
10 -10 10 -10	< 10 -10	10-10	10-10 10-10		a ^{had} (1		
	KN, hep-p BPP, hep-p HK, hep-p	Krause, he	τ based e+e- base		6I)		
τ based e+e- based	₀h/0111058 ₀h/0112255 ₀h/0112102	p-ph/9607259	<u>o</u>			MOIN KLOK	

DATA compared with the MC

(MC output has been interfaced with the detector simulation program)

Only statistical errors have been taken into account!

