

Recent results from FNAL E835 on the study of charmonium states in proton-antiproton annihilation

Matteo Negrini Università degli Studi di Ferrara - INFN

Photon 2003 – Frascati, 07-11 April 2003

Charmonium spectroscopy in $\overline{p}p$ annihilation

- e^+e^- annihilation \Rightarrow only $J^{PC}=1^$ states directly formed (J/ ψ and ψ ')
- $\gamma\gamma$ fusion \Rightarrow all C=+ (J \neq 1) states directly accessible
- B factory
- -• $\overline{p}p$ annihilation \Rightarrow all the states directly formed through 2 or 3 gluons intermediate states

Large hadronic backgroundDetection of electromagnetic final states

Antiproton beam and target

TARGET:•Hydrogen gas-jet target•Hydrogen clusters density: $1 - 4 \cdot 10^{14}$ atoms/cm³•The H₂ target density can be tuned toobtain constant luminosity: $L_{INST} \sim 2 \cdot 10^{31} \text{ cm}^{-2} \text{s}^{-1}$

•Target dimension \approx 7 mm

BEAM:

Antiprotons are accumulated until the desired current is reach. Then they are stochastically cooled and decelerated to the desired energy (continuous beam)
The total CM energy can be determined directly from the antiproton beam parameter

 $σ_E$ ≈400keV - $σ_E$ /E≈10⁻⁴ •Beam dimension ≈ 5 mm

Detector

Experimental technique

Event selection where final state includes e⁺e⁻

- Selection of electron / positron candidates:
 - high energy deposition in calorimeter
 - signal in the hodoscopes
 - signal in Čerenkov
- Electron Weight (EW):

Maximum likelihood method for the single electron selection based on calorimeter cluster shape and pulse height in Čerenkov and hodoscopes.

Kinematic fit

χ_0 mass and width

Luminosity: ~33 pb⁻¹ (~20 pb⁻¹ on resonance) on 17 energy points

Selected channel: radiative decay to J/ψ

Matteo Negrini

Photon 2003

χ_0 mass and width

 $M = 3415.4 \pm 0.4 \pm 0.2 MeV / c^{2}$ $\Gamma = 9.8 \pm 1.0 \pm 0.1 MeV$ $BR(\chi_{0} \rightarrow \overline{p}p) \times BR(\chi_{0} \rightarrow J / \psi\gamma) \times BR(J / \psi \rightarrow e^{+}e^{-}) = (1.61 \pm 0.11 \pm 0.08) \times 10^{-7}$

$\gamma\gamma$ final state selection

- Exactly 2 "on-time" clusters in the central calorimeter with high energy deposit and invariant mass within 20% of $\rm E_{CM}$
- No "undetermined-time" extra clusters with invariant mass within 35 MeV of the π^0 mass
- 4C kinematic fit to γγ
- $|\cos(\theta^*)|$ cut to improve signal to background ratio

γγ background (feeddown)

•Background mainly from:

 $\overline{p}p \rightarrow \pi^{0}\gamma \rightarrow 3\gamma$ $\overline{p}p \rightarrow \pi^{0}\pi^{0} \rightarrow 4\gamma$

where one or more photons are missing because of acceptance or calorimeter energy thresholds

•Measurement of the cross section for the background processes and Monte Carlo determination of the background contribution

•Comparison with measured $\gamma\gamma$ cross section for off-resonance points

 $\chi_0 \rightarrow \gamma \gamma$

 $BR(\chi_0 \to \overline{p}p) \times BR(\chi_0 \to \gamma\gamma) = (6.52 \pm 1.18 \pm 0.55) \times 10^{-8}$ Taking $BR(\chi_0 \to \overline{p}p)$ from the PDG: $\Gamma(\chi_0 \to \gamma\gamma) = 2.9 \pm 0.9 keV$

- 18.9 pb⁻¹ of data
- All the resonance parameters are measured in the γγ channel:

 $M = 2984.1 \pm 2.1 \pm 1.0 MeV / c^{2}$ $\Gamma = 20.4^{+7.7}_{-6.7} \pm 2.0 MeV$ $\Gamma_{\gamma\gamma} = 3.8^{+1.1+1.9}_{-1.0-1.0} 1 keV$

χ_0 branching ratios

 $BR(\chi_0 \to \overline{p}p) \times BR(\chi_0 \to \pi^0 \pi^0) = (5.09 \pm 0.81 \pm 0.25) \times 10^{-7}$ Using the PDG value: $BR(\chi_0 \to \pi^0 \pi^0) = BR(\chi_0 \to \pi^+ \pi^-)/2 = (2.50 \pm 0.35) \times 10^{-3}$ $BR(\chi_0 \to \overline{p}p) = (2.04 \pm 0.43 \pm 0.10) \times 10^{-4}$ To be compared with the PDG: $BR(\chi_0 \rightarrow \overline{p}p) = (2.2 \pm 0.5) \times 10^{-4}$ Using the result: $BR(\chi_0 \to \overline{p}p) \times BR(\chi_0 \to J/\psi\gamma) \times BR(J/\psi \to e^+e^-) =$ $= (1.61 \pm 0.11 \pm 0.08) \times 10^{-7}$ $\frac{BR(\chi_0 \to J/\psi\gamma)}{BR(\chi_0 \to \pi^0 \pi^0)} = 5.34 \pm 0.93 \pm 0.34$ $BR(\chi_0 \rightarrow J/\psi\gamma) = (13.3 \pm 3.0 \pm 0.9) \times 10^{-3}$ To be compared with the PDG: $BR(\chi_0 \rightarrow J/\psi\gamma) = (10.2 \pm 1.7) \times 10^{-3}$

Electric dipole trasition ($P \rightarrow S + \gamma$)

The value obtained for $\Gamma(\chi_0 \rightarrow J/\psi\gamma)$, using the new total width and the BR measurements, is consistent with the theory of electric dipole transition

$$\Gamma(P \rightarrow S + \gamma) = \frac{4}{9} e_Q^2 \alpha k^3 |E_{if}|^2 \begin{cases} k = \frac{M_i^2 - M_f^2}{2M_i} \\ |E_{if}| = \int_0^\infty dr R_i(r) \cdot r^2 \cdot R_f(r) \end{cases}$$

	Γ(J/ψγ) _{exp} (keV)	k (MeV)	Г/k ³ (MeV ⁻²)
χο	130±33	304	(4.6±1.2)×10 ⁻⁹
χ1	290±50	390	(4.9±0.8)×10 ⁻⁹
χ2	389±52	430	(4.9±0.7)×10 ⁻⁹

e^+e^- final states selection at the ψ'

• ψ' and J/ψ detected through their e⁺e⁻ decay

$$\psi' \rightarrow J / \psi \pi^{+} \pi^{-} \rightarrow e^{+} e^{-} \pi^{+} \pi^{-}$$

$$\psi' \rightarrow J / \psi \pi^{0} \pi^{0} \rightarrow e^{+} e^{-} 4 \gamma$$

$$\psi' \rightarrow J / \psi \eta \rightarrow e^{+} e^{-} 2 \gamma$$

$$\psi' \to J/\psi X \to e^+ e^- X$$

- All the exclusive channels are selected with kinematic fits
- 14.3 pb⁻¹ of data in the ψ ' energy region collected in year 2000
 - 12.4 pb⁻¹ on resonance \Rightarrow 32862 events
 - 1.9 pb⁻¹ off resonance \Rightarrow 66 events \cdot

ψ ' branching ratios

Matteo Negrini

Conclusions

- Charmonium states are studied in proton antiproton annihilation detecting electromagnetic final states
- Extensive study of the χ_{c0} ...
 - Mass and total width
 - $-\gamma\gamma$ width
 - Interference in $\pi^0\pi^0$ decay
- ... and of the η_c
 - Mass and total width
 - $-\gamma\gamma$ width
- New measurement of $BR(\psi' \rightarrow J/\psi X)$ and $BR(\psi' \rightarrow e^+e^-)$