Charmonium Production at BaBar

Jamie Boyd University of Bristol

On behalf of the $BABAR_{III}$ Collaboration

Photon 2003, Frascati 7th-11th April 2003

- BaBar detector & PEP-II performance
- η_c measurements in 2 photon events
 - Measurement of the η_c width
 - Observation of $\eta_c(25)$
- · J/ψ production using ISR events
 - Measurement of the J/ψ total width
- Understanding J/ ψ production in B decays as a test of non-relativistic QCD:

Preliminary Result!

- Branching fractions: $B^* \to J/\psi p \Lambda$ and $B^0 \to J/\psi \overline{p} p$
- Summary of new exclusive B decays to charmonium

All of the above analyses represent new or newly updated results

BaBar Detector

PEP-II has provided 100fb⁻¹ to date exceeding design

April 10th , 2003

J. Boyd - Photon 2003

- + $\eta_{\rm c}$ lowest lying charmonium state
- + $\eta_{\rm c}$ width poorly determined
- New Babar result using 1715 ± 70 signal events

$$e^+e^- \rightarrow e^+e^-\eta_C$$

 $\kappa^0 \kappa^+ \pi^-$

- Use J/ψ ISR events as cross check of the detector resolution model
- Don't detect the electrons

Spectrum fitted with:

- J/ψ: Gaussian
- η_c : Gaussian \otimes Breit-Wigner Bkg.:Exponential

 $\label{eq:states} \begin{array}{l} \mbox{Free parameters:} \\ M_{J/\psi}, \ M_{J/\psi} - M_{\eta_c}, \sigma_{J/\psi}, \Gamma_{\eta_c}^{tot}, (bkgr.) \\ \\ M_{\eta_c} = M_{J/\psi}^{PDG} - (M_{J/\psi} - M_{\eta_c})_{fit} \\ \\ \sigma_{\eta_c} = \sigma_{J/\psi} - 0.8 \ MeV \quad from \ MC \end{array}$

η_{c} production in 2 γ events - Results

Dominant Syst errors:

for $M_{\eta c}$ uncertainty on mass scale $M_{J/\psi}^{FIT} - M_{J/\psi}^{PDG} = -1.8 \text{MeV/c}^2$ for $\Gamma_{\eta c}$ uncertainty in background parameterization (0.7 MeV/c²)

η_c production in 2γ events - η_c (25)

J/ψ production in ISR events

- Study ISR $e^+ e^- \rightarrow \gamma \mu^+ \mu^-$ events in the $\mu^+ \mu^-$ mass range around the J/ ψ mass (2.8 3.2GeV/c²)
- + Fit to the J/ ψ mass spectrum to measure J/ ψ parameters
- ~10% of ISR events have a photon which falls in the detector acceptance
- High statistics due to large luminosity so fully reconstruct both muons and photon
- Event selection
 - Εγ*>3GeV
 - Muon ID $E_{\mu}(EMC) < 0.4GeV$, $p_{\mu} > 0.5GeV/c$
 - Kinematic cuts $|E_{total}-E_{beams}| < 1.5 GeV, \Delta \phi < 0.07 rad$
- 1C Kinematic fit mass of the recoil against the di-muon system constrained to be 0 (photon hypothesis)

Probability that ISR photon has energy fraction x

tot

In ISR
$$\frac{d\sigma f}{dx} = W(s, x) \cdot \sigma_0(s(1-x))$$

Integrating and adding in J/ψ lineshape:

 $d\sigma$ (s r)

$$\sigma_{J/\psi}(s) = \frac{12\pi\Gamma_{ee}\Gamma_{\mu\mu}}{m.s.\Gamma_{tot}} W(s, x_0); x_0 = (1 - \frac{m^2}{s})$$

Measuring total cross section gives: $\frac{\Gamma_{ee}\Gamma_{\mu\mu}}{\Gamma_{tot}} = \Gamma_{ee}B_{\mu\mu}$ Substituting in PDG values for $B_{\mu\mu}$ and B_{ee} allows measurement of Γ_{ee} and Γ_{tot} $B_{ee} = \frac{\Gamma_{ee}}{\Gamma}$

J/ψ production in ISR events - Results

(Dominant systematic is error on K from FSR, and uncertainty on J/ψ lineshape)

•Effects the shape of the distribution but has very little effect on the total cross section

•Taken into account as a systematic error (0.3%)

J/ψ production in ISR events - the future...

This is just the beginning for charmonium production in ISR at BaBar

Also looking at J/ψ , $\psi(2S)$ production in hadron decays

$B \rightarrow J/\psi X$ experimental observation

An excess at low momentum in the inclusive production of charmonium mesons in B decay at the Y(4S) has been observed compared to the non-relativistic QCD prediction (excess corresponds to a branching fraction ~10⁻⁴)

These processes can be enhanced by exotic QCD resonances in intermediate states e.g. (baryonium, pentaquark, nuclear-bound quarkonium)

Key elements of the analysis are the separation of low momentum protons from Kaons (DIRC, dE/dx) - 98 % efficiency, less than 1% misidentification

Bayesian analysis, uniform prior ≥ 0 gives: $\mathcal{B}(B^+ \rightarrow J/\psi p\overline{\Lambda}) = (12^{+9}_{-6}) \times 10^{-6}$ 90% CL upper limit 26×10⁻⁶

Efficiency uncertainty is dominant systematic

Submitted to PRL hep-ex/0303036

$B^0 \rightarrow J/\psi p\overline{p}$ results

Expected 0.64±0.17 background events, one observed. 90% CL upper limit 1.9x10⁻⁶

 Measured branching fractions order of magnitude too low to explain excess

• Each of the possible QCD exotic resonances (baryonium, pentaquark, nuclear-bound quarkonium) that could be involved foresee a monoenergetic particle (J/ ψ , p, Λ) in the B frame

No evidence for Exotic resonance production

April 10th , 2003

- · New measurement of the η_{c} width
 - Agrees with large width measurements by Belle $\Gamma_{\eta_c}^{TOT} = 33.3 \pm 2.5 \pm 0.8 \text{MeV/c}^2$
 - Observation of the $\eta_c(25)$
- + J/ ψ production in ISR events
 - Preliminary measurement of the total J/ ψ width $\Gamma_{J/\psi}^{Total} = 94.7 \pm 4.4 \text{keV/c}^2$
 - Preliminary measurement of the $e^+e^- J/\psi$ width $\Gamma_{J/\psi}^{ee} = 5.61 \pm 0.20 \text{keV/c}^2$
- New Exclusive B decays to charmonium
 - J/ψ Baryon anti-Baryon processes cannot explain the excess of J/ψ production at low p* in B decays

What is Mes and DeltaE

etaC event selection

Systematics on ISR J/ψ widths

 J/ψ baryon anti-baryon event selection

- The variables M_{ES} and ΔE
 - ΔE is the difference between the B candidate energy and the expected energy $\Delta E = E_B^* E_{beam}^*$
 - M_{ES} is the B candidate mass with the beam energy used as the candidates energy (0.3 (0.3) (0.2) (0.2) (0.3) ($M_{ES} = \sqrt{E_{beam}^{*2} - p_{B}^{*2}}$ BABAR Nearly uncorrelated 0.1 Very useful for distinguishing signal from, background (continuum & B background) -0.1-0.2 -0.3 <u></u> 5.22 5.24 5.26 5.28 5.3 $m_{ES} (GeV/c^2)$ (a)

- Do not reconstruct the e^+e^-
- Select 2 photon events
 - E^{tot}(lab) <9GeV (suppresses B decays)
 - Σp_T <0.5GeV/c
- Fully reconstruct the $\eta_{C}(K_{S}K^{+}\pi^{-})$
 - Ks ->π+π-
 - 0.491<M(π+π-)<0.503 GeV/c²
 - Cos θ(Ks) > 0.99
 - Apply Particle Id on charged K candidate (dE/dX & DIRC)
 - Fit the $K_S K^+ \pi^-$ vertex (prob($\chi 2$)>0.01)

Summary of the systematic errors on the J/ψ parameters

0.9% Statistical error on K factor Systematic error on K factor 1.3% (Varying cut values) **Background uncertainty** 0.5% (MC / varying background cuts) Simulation of J/ψ lineshape 1.4% (fit with or without muon bremsstrahlung) Interference 0.3% (see slide 13) 2.2% Total

- Reconstruct $J/\psi \rightarrow e+e- \text{ or } \mu+\mu-$
- $2.95 < M_{ee} < 3.13 \text{ GeV/c}^2 \text{ or } 3.06 < M_{\mu\mu} < 3.13 \text{ GeV/c}^2$
 - Particle Id on the electron candidates (EMC, dE/dX, DIRC) and muon candidates (EMC, IFR)
- Particle Id on Proton candidates (dE/dX, DIRC)
- Lambda candidates reconstructed in Λ -> p+ π mode
 - 1.10< M_{pπ}<1.13 GeV/c²
 - Λ vertex >2mm from J/ ψ vertex
- Cut on difference between expected B energy and B candidate energy (ΔE) & Mes (B-mass with the beam energy used to improve the resolution)
- Efficiencies
 - 4.9 ± 0.9% (B⁺-> J/ψ Λp), 18.4 ± 2.4% (B⁰ -> J/ψ pp)