On two-photon production of two ρ-mesons

I. V. Anikin (JINR & E. Polytechnique)

in collaboration with

B. Pire (E. Polytechnique)
O. V. Teryaev (JINR)

and thanks to

M. Diehl (DESY)
I. Vorobiev (CERN)
The new kinds of partonic distributions (GPD) and distribution amplitudes (GDA) are arisen from

\[h = \{ N, \pi, \rho, \ldots \} ; \quad \mu \nu \Rightarrow Q^2 \to \infty ; \quad \mu \nu \Rightarrow q^2 \to 0 \]

I) \(h = N \Rightarrow \) a good subject from experimental point of view, the theoretical investigations are related to more complicated calculations, than for meson case, due to spin \(\frac{1}{2} \)

II) \(h = \pi, \rho, \ldots \Rightarrow \) the theoretical part is attracted thanks to relative simplicity. But the problems of experimental character certainly exist owing to the absence of \(\pi \)-target.

1) The probing the meson structure is available from both exper and theor. points of view.

- exp. \(\gamma^* \to \pi \pi \) CLEO Coll., J. Gershon et al., PRD 57, 33 (1998)
- theor. \(\gamma^* \to \pi \pi \) twist-2 and twist-3 have been considered in M. Diehl et al., PRL 81, 1782 (1998)
 N. Kivel & L. Mankiewicz, PRD 63, 054017
New (prelim.) experimental data have been obtained by L3 Collab. at LEP for $e^+e^- \rightarrow e^+e^- \pi^+\pi^0$ process (to be published in Phys. Lett. B through talk of S. Nesterov).

We focus on Q^2-dependence of $d\sigma_{e\bar{e}}/dQ^2$:

- exp.: $\frac{d\sigma_{e\bar{e}}}{dQ^2} \sim \frac{1}{Q^6}$

- theory:

\[d\sigma_{e\bar{e}} \sim \frac{1}{Q^2} \left| T(\gamma^*\gamma \rightarrow 2\pi^0) \right|^2 \]

\[\left| T(\gamma^*\gamma \rightarrow 2\pi^0) \right|^2 \Rightarrow Q^0 (tw \sim 2) \]

Possible treatment: the data probe the partonic picture of the composite structure of hadrons — scaling.
The reaction which we study is

\[e(k) + e(l) \rightarrow e(k') + e(l') + p^0(p_1) + p^0(p_2) \]

and the subprocess of this reaction is

\[e(k) + \gamma(q') \rightarrow e(k') + p^0(p_1) + p^0(p_2) \]

where

\[q^2 = -Q^2 \text{ is very large} \]

\[q^2 \approx 0 \]
Within the $\gamma^*\gamma$ center of mass frame we write

$$q = (q_0, \vec{q}_r, q_\perp), \quad p_1 = (p_1^0, \vec{p}_1 \sin \theta, 0, \vec{p}_1 \cos \theta)$$

and $k_0 = E_1, \ p_0 = E_2$ for the initial lepton energies; the Mandelstam variables are written as

$$S_{ee} = (k+e)^2 \approx 2kE, \quad S_{e\gamma} = (k+q')^2 \approx 2kq' = x_2 S_{ee}$$

where the fraction x_2 is defined as $q'_0 = x_2 p_0$ is introduced.
Basis of light-cone vectors

\[p^2 = \ell^2 = 0, \quad \ell^+ = p^+ = 0, \quad \ell n = 1 \]

\[\text{dim}_M [\ell] = +1, \quad \text{dim}_M [n] = -1 \]

With the help of this basis, the meson momenta are presented as:

\[p_1^\mu = \frac{1+\xi}{2} p^\mu + \frac{1-\xi}{2} \frac{W^2}{\ell^2} \ell^\mu - \Delta_T^\mu \]

\[p_2^\mu = \frac{1-\xi}{2} p^\mu + \frac{1+\xi}{2} \frac{W^2}{\ell^2} \ell^\mu + \Delta_T^\mu \]

As usually for the DA kinematics, we introduce

\[\Delta^\mu = p_2^\mu - p_1^\mu, \quad \Delta_T^\mu = p_2^\mu + p_1^\mu \]

The skewness parameter \(\xi \) is defined by

\[\Delta n = -\xi \ell n \]

or

\[\frac{1+\xi}{2} = \frac{P_1^+}{P^+} = \frac{1+\beta \cos \Theta}{2}, \quad \beta = \sqrt{1 - \frac{4m^2}{W^2}} \]

Note also that the transverse momentum \(\Delta_T = (0, \vec{a}_T, 0) \) is given by

\[\Delta_T^2 = -\vec{a}_T^2 = t + (W^2 - 4m^2) \cos^2 \Theta \]
Leading twist (twist-2) accuracy.
Parameterization of relevant matrix elements

Keeping the terms of leading twist-2 contributions, the vector and axial correlators can be written as:

$$\langle p_1, \lambda_1; p_2, \lambda_2 | \overline{\psi}(0) \gamma_\mu \psi(x) | 0 \rangle = \int_0^1 dy \ e^{-i y \lambda}$$

$$P_\mu \sum_i e_i^a e_i^b \ V_{a\beta}^{(i)}(p_1, p_2, \lambda) \ H_{i}^{PP, \nu}(y, z, W^2)$$

$$\langle p_1, \lambda_1; p_2, \lambda_2 | \overline{\psi}(0) \gamma_5 \gamma_\mu \psi(x) | 0 \rangle = \int_0^1 dy \ e^{-i y \lambda}$$

$$P_\mu \sum_i e_i^a e_i^b \ A_{a\beta}^{(i)}(p_1, p_2, \lambda) \ H_{i}^{PP, \nu}(y, z, W^2)$$

Due to parity invariance

$$V_{a\beta}^{(i)} \rightarrow 5 \text{ tensor structures}$$

$$A_{a\beta}^{(i)} \rightarrow 4 \text{ tensor structures}$$
\[\sum_{i} e_{1}^{a} e_{2}^{b} \left< \omega_{x}^{(i)} \left(p_{1}, p_{2}, n \right) \right| H_{i}^{p_{1} p_{2} n} \left(y \right) = \]

\[= -\left(e_{1} \cdot e_{2} \right) H_{1}^{p_{1} p_{2} n} \left(y \right) + \frac{\left(e_{1} \cdot n \right) \left(e_{2} \cdot p \right) + \left(e_{1} \cdot p \right) \left(e_{2} \cdot n \right)}{p \cdot n} \left(H_{2}^{p_{1} p_{2} n} \left(y \right) \right) - \]

\[- \frac{\left(e_{1} \cdot p \right) \left(e_{2} \cdot p \right)}{2m^{2}} \left(H_{3}^{p_{1} p_{2} n} \left(y \right) \right) + \frac{\left(e_{1} \cdot n \right) \left(e_{2} \cdot p \right) - \left(e_{1} \cdot p \right) \left(e_{2} \cdot n \right)}{p \cdot n} \left(H_{4}^{p_{1} p_{2} n} \left(y \right) \right) + \]

\[+ \left\{ \frac{4m^{2} \left(e_{1} \cdot n \right) \left(e_{2} \cdot n \right)}{(p \cdot n)^{2}} + \frac{1}{3} \left(e_{1} \cdot e_{2} \right) \right\} \left(H_{5}^{p_{1} p_{2} n} \left(y \right) \right) \]

for the vector tensor structures, and

\[\sum_{i} e_{1}^{a} e_{2}^{b} \left< \omega_{x}^{(i)} \left(p_{1}, p_{2}, n \right) \right| H_{i}^{p_{1} p_{2} n} \left(y \right) = \]

\[= i \left(e_{1} \cdot e_{2} \right) \frac{\left(H_{1}^{p_{1} p_{2} n} \left(y \right) \right)}{(p \cdot n)} + i \left(e_{1} \cdot e_{2} \right) \frac{\left(H_{1}^{p_{1} p_{2} n} \left(y \right) \right)}{(p \cdot n)} + i \left(e_{1} \cdot e_{2} \right) \frac{\left(H_{1}^{p_{1} p_{2} n} \left(y \right) \right)}{(p \cdot n)} + i \left(e_{1} \cdot e_{2} \right) \frac{\left(H_{1}^{p_{1} p_{2} n} \left(y \right) \right)}{(p \cdot n)} \]

for the axial tensor structures.

Here, \[E_{x}^{T} \equiv E_{x}^{\mu} p_{\mu} n_{\nu} \]
Amplitude of $\gamma^* p \rightarrow p^0 p^0$ subprocess

Diagrams:

```
[Diagram 1]
```

Amplitude:

$$T_{\mu\nu} = \int \frac{dy}{y(1-y)} \left[g_{\mu\nu} (1-2y) V(y, \cos \theta, W^2) + \right.$$

$$\left. + \epsilon_\mu^\nu A(y, \cos \theta, W^2) \right]$$

where scalar and pseudo-scalar functions V and A denote the following:

$$V(y, \cos \theta, W^2) = \sum_i e_i^a e_2^\beta V^{(a)}_{\alpha \beta} H_{i \alpha \beta}^{\mu \nu} (y, \mu \cos \theta, W^2)$$

$$A(y, \cos \theta, W^2) = \sum_i e_i^a e_2^\beta A^{(a)}_{\alpha \beta} H_{i \alpha \beta}^{\mu \nu} (y, \mu \cos \theta, W^2)$$
The squared and polarization averaged functions $|V|^2$ and $|\Delta|^2$ which will appear in the differential cross-section read:

$$
|V|^2 = \mathcal{P}^{d_1 d_2} (p_1) \mathcal{P}^{d_2 d_1} (p_2) V_{d_1 \beta_1}^{(i)} H^{\text{ss},V}_{i} V_{d_2 \beta_2}^{(j)} H^{\text{ss},V}_{j},
$$

$$
|\Delta|^2 = \mathcal{P}^{d_1 d_2} (p_1) \mathcal{P}^{d_2 d_1} (p_2) A_{d_1 \beta_1}^{(i)} H^{\text{ss},A}_{i} A_{d_2 \beta_2}^{(j)} H^{\text{ss},A}_{j},
$$

where

$$
P_{\alpha \beta} (p) \overset{\text{def}}{=} \sum_{\lambda} e_{\alpha}^{(\lambda)} e_{\beta}^{*(\lambda)} =
$$

$$
= -g_{\alpha \beta} + \frac{p_{\alpha} p_{\beta}}{m^2}
$$
Differential Cross-Section

Diagrams:

Amplitude:

\[A(ee \rightarrow ee\gamma) = \sum_{i, j} \left[J_\mu(e, e') \cdot \xi_\mu^{j(i)} \right] \frac{1}{q'^2} A_{ij} \cdot \frac{1}{q^2} \left[\xi_\nu^{j(i)} \cdot J_\nu(k, k') \right] \]

Due to parity invariance there are only three independent helicity amplitudes:

\[A(\rightarrow), \quad A(\rightarrow), \quad A(\rightarrow) \]

Square of modulus of amplitude reads:

\[|A(ee \rightarrow ee\gamma)|^2 = |A(e\gamma \rightarrow e\gamma)|^2 \frac{1}{q'^4} |A(e \rightarrow e\gamma)|^2 \]
It is useful to introduce the integrated functions which take the forms:

\[
\begin{align*}
\mathcal{V}(\cos \theta, w^2) &= \int_0^1 dy \frac{1-2y}{y(1-y)} \mathcal{V}(y, \cos \theta, w^2) \\
\mathcal{A}(\cos \theta, w^2) &= \int_0^1 dy \frac{1}{y(1-y)} \mathcal{A}(y, \cos \theta, w^2)
\end{align*}
\]

In this case, the amplitude is expressed as

\[
T_{\mu \nu} = g_{\mu \nu} \mathcal{V}(\cos \theta, w^2) + \varepsilon_{\mu \nu}^{(i)} \mathcal{A}(\cos \theta, w^2)
\]

The next objects are the helicity amplitudes:

\[
A(i, j) = \frac{\varepsilon_{\mu}^{(i)}}{q_{\mu}} \frac{\varepsilon_{\nu}^{(j)}}{q_{\nu}} T_{\mu \nu}
\]

where

\[
\begin{align*}
\varepsilon_{\mu}^{(\pm)} &= \left(0, \frac{\pm 1}{\sqrt{2}}, \frac{\pm i}{\sqrt{2}}, 0 \right) \\
\varepsilon_{\mu}^{(0)} &= \left(0, \frac{1}{\sqrt{2}}, \frac{-i}{\sqrt{2}}, 0 \right), \quad \varepsilon_{\mu}^{(\pm)} = \left(\frac{1}{\sqrt{q^2}}, 0, 0, \frac{q_{\mu}}{q^2} \right)
\end{align*}
\]

\[Q^2 = -q^2\]
Finally, we write for the cross-section:

\[
\frac{d\sigma(\text{ee+ee} \rightarrow \text{ee})}{dQ^2} = \frac{d^4}{16\pi^2} \int_{x_2} d^2x_2 \ F_{WW}(x_2) + \frac{1}{16x_2^2E_2^4Q^2} \int_{w_{\text{min}}}^{w_{\text{max}}} \ dw^2 \beta \ F_{(+,+)}(w^2) - \frac{1}{2x_2E_2^4Q^2} \int_{w_{\text{min}}}^{w_{\text{max}}} \ dw^2 \beta \ F_{(+,+)}(w^2) \frac{Q^2 + w^2}{Q^2 + Q^2 + w^2} + \frac{2}{Q^2} \int_{w_{\text{min}}}^{w_{\text{max}}} dw^2 \beta \ F_{(+,+)}(w^2) \frac{Q^2 + w^2}{(Q^2 + Q^2 + w^2)^2} \]

where \(F_{WW}(x_2) \) - Weizsacker-Williams distribution function, and

\[
F_{(+,+)}(w^2) = \int d(\cos\theta) 4 \left\{ |W(\cos\theta, w^2)|^2 + |A(\cos\theta, w^2)|^2 \right\}
\]
Figure 3: Cross-section $d\sigma/dQ^2[pb/GeV^2]$ in logarithmic scale. The theoretical cross-section is plotted for the best fitted parameters which are $C_1 = 1$, $W_1 = 2.9$ GeV and $W_2 = 1.2$ GeV

\[
\frac{d\sigma}{dQ^2}(ee\rightarrow ee2\pi^0) = \frac{\alpha^4}{16\pi^2} C_1 \int dx_2 F_{ww}(x_2)
\]

\[
\left\{ \frac{1}{16x_2 E_2^4 Q^2} - \frac{1}{2x_2 E_2^2 Q (Q^2 + <W_2^2>)} + \frac{2}{Q^2 (Q^2 + <W_2^2>)^2} \right\}
\]

The best fit correspond to

$C_1 = 1.0 \pm 0.12$ GeV2 \hspace{0.5cm} $<W_2> = 1.2 \pm 0.08$ GeV

$<W_1> = 2.9 \pm 1.8$ GeV

χ^2/d.o.f. = 0.25